Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) provides direct analytical readouts of small molecules that can be used to characterize the metabolic phenotypes of genetically engineered bacteria. In an effort to accelerate the time frame associated with the screening of mutant libraries, we have developed a high-throughput DESI-MSI analytical workflow implementing a single raster line-scan strategy that facilitates the collection of location-resolved molecular information from engineered strains on a subminute time scale. Evaluation of this "Fast-Pass" DESI-MSI phenotyping workflow on analytical standards demonstrated the capability of acquiring full metabolic profiling information with a throughput of ∼40 s per sample. This Fast-Pass strategy was implemented in the analysis of genetically edited strains that have been engineered to produce various free-fatty acids (FFAs) for applications relevant to biofuels. Due to the untargeted nature of DESI-MSI, the investigation of these strains yielded molecular information for both global metabolites and targeted detection of accumulated bioproducts, allowing simultaneous readouts of strain-specific chemical profiles and comparative measurements of FFA production levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jasms.4c00459 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!