Cyanobacterial phycoremediation: a sustainable approach to dairy wastewater management.

Environ Technol

Botany Discipline, School of Biological Sciences and Biotechnology, Goa University, Goa, India.

Published: January 2025

The dairy industry is a significant sector within the food industries, known for its high-water consumption and consequent generation of dairy wastewater (DWW), which is rich in pollutants like Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). Improper disposal of DWW poses serious environmental challenges, including eutrophication and highlighting the need for sustainable biological treatment methods. This study investigates the potential of indigenous cyanobacterial strains , , , and for the bioremediation of DWW. Under controlled laboratory conditions, these strains were assessed for their uptake capabilities for 15 days. Results indicated that significantly reduced (approx. 70%, < .05) in key pollutants such as ammonia, nitrate, and phosphate compared to other strains. Biochemical analyses indicated a decrease in biomass, chlorophyll a, carotenoids, proteins, and carbohydrates in DWW relative to the growth of cyanobacteria in BG 11 media. This decline may hinder the effectiveness of cyanobacterial in wastewater remediation. The findings highlight the efficacy of selected cyanobacteria in nutrient removal from DWW, emphasizing their dual role in nutrient uptake through biosorption mechanism and biomass generation. The results pave the way for innovative biotechnological applications such as biofertilizers and feedstock for bioethanol/ biodiesel production, thus promoting more sustainable management practices within the dairy industry.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2025.2453947DOI Listing

Publication Analysis

Top Keywords

dairy wastewater
8
dairy industry
8
oxygen demand
8
dww
5
cyanobacterial phycoremediation
4
phycoremediation sustainable
4
sustainable approach
4
dairy
4
approach dairy
4
wastewater management
4

Similar Publications

Cyanobacterial phycoremediation: a sustainable approach to dairy wastewater management.

Environ Technol

January 2025

Botany Discipline, School of Biological Sciences and Biotechnology, Goa University, Goa, India.

The dairy industry is a significant sector within the food industries, known for its high-water consumption and consequent generation of dairy wastewater (DWW), which is rich in pollutants like Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). Improper disposal of DWW poses serious environmental challenges, including eutrophication and highlighting the need for sustainable biological treatment methods. This study investigates the potential of indigenous cyanobacterial strains , , , and for the bioremediation of DWW.

View Article and Find Full Text PDF

Metagenomic Insights into Pollutants in Biorefinery and Dairy Wastewater: rDNA Dominance and Electricity Generation in Double Chamber Microbial Fuel Cells.

Bioengineering (Basel)

January 2025

Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, P.O. Box 12363, Jacobs 4062, South Africa.

This study evaluates the potential of biorefinery and dairy wastewater as substrates for electricity generation in double chamber Microbial Fuel Cells (DCMFC), focusing on their microbial taxonomy and electrochemical viability. Taxonomic analysis using 16S/18S rDNA-targeted DGGE and high-throughput sequencing identified Proteobacteria as dominant in biorefinery biomass, followed by Firmicutes and Bacteriodota. In dairy biomass, Lactobacillus (77.

View Article and Find Full Text PDF

Optimisation of Dairy Soiled Water as a Novel Duckweed Growth Medium.

Plants (Basel)

January 2025

School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 TK30 Cork, Ireland.

As a result of intensive agriculture, large quantities of liquid wastewaters are produced. Dairy soiled water (DSW) is produced in large volumes during the milking process of cattle. It comprises essential plant nutrients such as nitrogen, phosphorus, and potassium.

View Article and Find Full Text PDF

Poultry litter extract as solid waste supplement for enhanced microalgal biomass production and wastewater treatment.

Environ Sci Pollut Res Int

January 2025

Biorefinery and Bioenergy Research Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.

Wastewater and livestock waste can be used as a cheap source of nutrients for microalgae growth. In this work, a cocktail waste medium (CWM) was developed using 75% Chhalera municipal wastewater (C-MWW), 25% Parag dairy wastewater (P-DWW), and 15 g L of poultry litter extract (PLE-15) for low-cost cultivation of Chlorella sp. BRE4.

View Article and Find Full Text PDF

This study investigated the antimicrobial efficacy of graphene, titanium dioxide nanoparticles (TiO2NPs), and calcium oxide nanoparticles (CaONPs) against various microorganisms in dairy wastewater. The minimum inhibitory concentration (MIC) of graphene was determined to be 41.66 mg/L for Escherichia coli and 33.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!