There has been an increased interest in standardized approaches to coding facial movement in mammals. Such approaches include Facial Action Coding Systems (FACS), where individuals are trained to identify discrete facial muscle movements that combine to create a facial configuration. Some studies have utilized FACS to analyze facial signaling, recording the quantity of morphologically distinct facial signals a species can generate. However, it is unclear whether these numbers represent the total number of facial muscle movement combinations (which we refer to as facial configurations) that each species is capable of producing. If unobserved combinations of facial muscle movements are communicative in nature, it is crucial to identify them, as this information is important for testing research hypotheses related to the evolution of complex communication among mammals. Our study aimed to assess how well the existing literature represents the potential range of facial signals in two previously studied species: chimpanzees (Pan troglodytes) and domesticated cats (Felis silvestris catus). We adhered to the coding guidelines outlined in the FACS manuals, which are based on the anatomical constraints and capabilities of each mammal's face, to create our comprehensive list of all potential facial configurations. Using this approach, we found that chimpanzees and domesticated cats may be capable of producing thousands of facial configurations, many of which have not yet been documented in the existing research literature. It is plausible that some of these facial configurations are communicative and could be discovered with further research and video recording. In addition to our findings having significant implications for future research on the communicative complexity of mammals, it can also assist researchers in evaluating FACS coding accuracy.
Download full-text PDF |
Source |
---|---|
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314896 | PLOS |
J Med Internet Res
January 2025
Research Centre Jülich, Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Jülich, Germany.
Background: Traditional in-clinic methods of collecting self-reported information are costly, time-consuming, subjective, and often limited in the quality and quantity of observation. However, smartphone-based ecological momentary assessments (EMAs) provide complementary information to in-clinic visits by collecting real-time, frequent, and longitudinal data that are ecologically valid. While these methods are promising, they are often prone to various technical obstacles.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Psychology, Lyon College, Batesville, Arkansas, United States of America.
There has been an increased interest in standardized approaches to coding facial movement in mammals. Such approaches include Facial Action Coding Systems (FACS), where individuals are trained to identify discrete facial muscle movements that combine to create a facial configuration. Some studies have utilized FACS to analyze facial signaling, recording the quantity of morphologically distinct facial signals a species can generate.
View Article and Find Full Text PDFJ Biomed Inform
January 2025
University of Manchester, United Kingdom.
Objective: Extracting named entities from clinical free-text presents unique challenges, particularly when dealing with discontinuous entities-mentions that are separated by unrelated words. Traditional NER methods often struggle to accurately identify these entities, prompting the development of specialised computational solutions. This paper systematically reviews and presents the methodologies developed for Discontinuous Named Entity Recognition in clinical texts, highlighting their effectiveness and the challenges they face.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Information Engineering, University of Padova, 35122 Padova, Italy.
Sleep posture is a key factor in assessing sleep quality, especially for individuals with Obstructive Sleep Apnea (OSA), where the sleeping position directly affects breathing patterns: the side position alleviates symptoms, while the supine position exacerbates them. Accurate detection of sleep posture is essential in assessing and improving sleep quality. Automatic sleep posture detection systems, both wearable and non-wearable, have been developed to assess sleep quality.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
High-Power Converter Systems (HLU), Technical University of Munich (TUM), 80333 Munich, Germany.
Gate dielectrics are essential components in nanoscale field-effect transistors (FETs), but they often face significant instabilities when exposed to harsh environments, such as radioactive conditions, leading to unreliable device performance. In this paper, we evaluate the performance of ultrascaled transition metal dichalcogenide (TMD) FETs equipped with vacuum gate dielectric (VGD) as a means to circumvent oxide-related instabilities. The nanodevice is computationally assessed using a quantum simulation approach based on the self-consistent solutions of the Poisson equation and the quantum transport equation under the ballistic transport regime.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!