Background: Leishmaniasis is a health problem in many regions with poor health and poor life resources. According to the World Health Organization (WHO), an estimated 700,000-1 million new cases arise annually. Effective control of sand fly vector populations is crucial for reducing the transmission of this disease. Therefore, this review aims to comprehensively examine and evaluate the current methods for controlling sand fly populations, focusing on biological and gene drive techniques.

Methods And Findings: A detailed, comprehensive literature search was carried out using databases including Google Scholar, PubMed, ScienceDirect, and the National Library of Medicine (NIH). These searches were done using specific keywords related to the field of study. This current review identified several promising methods, including genetically modified sand flies, using transgenic approaches by taking advanced gene editing tools like Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) and genetic modification of symbiotic microorganisms for controlling sand fly populations, which appeared to be proven under laboratory and field settings.

Conclusion: Genetic control approaches have many benefits over chemical control, including long-lasting effects on targets, high specificity, and less environmental impact. Advances in genetic engineering technologies, particularly CRISPR/Cas9, sterile insect techniques, and gene drive insect modification, offer new avenues for precise and efficient sand fly management. Future research should prioritize optimizing rearing and sterilization techniques, conducting controlled field trials, and fostering collaboration across disciplines to realize the potential of genetic control strategies in combating leishmaniasis.

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pntd.0012795DOI Listing

Publication Analysis

Top Keywords

sand fly
16
genetic control
12
control approaches
8
sand flies
8
controlling sand
8
fly populations
8
gene drive
8
sand
6
genetic
5
control
5

Similar Publications

Visceral leishmaniasis (VL) is a vector-borne disease caused by the obligate intracellular protozoan in India. VL can be complicated by post-kala-azar dermal leishmaniasis (PKDL), a macular or nodular rash that develops in 10%-20% of patients after treatment of VL in India. Patients with PKDL are infectious to sand flies, promoting further transmission of the parasite.

View Article and Find Full Text PDF

First clinical cases of leishmaniosis in meerkats (Suricata suricatta) housed in wildlife parks in Madrid, Spain.

Parasit Vectors

January 2025

Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain.

Background: In recent years, cases of leishmaniosis have been described in animals housed in captivity in zoos in Spain [Bennett's wallaby (Macropus rufogriseus rufogriseus), orangutan (Pongo pygmaeus pygameus), and European otter (Lutra lutra)]. Some of these zoological parks are in endemic areas for both human and animal leishmaniosis, thus it should be very important to include this zoonosis in the differential diagnosis.

Methods: The study was carried out in two zoological parks in Madrid, Madrid Zoo and Faunia, and analyzed seven meerkats.

View Article and Find Full Text PDF

In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.

View Article and Find Full Text PDF

Background: Leishmaniasis is a health problem in many regions with poor health and poor life resources. According to the World Health Organization (WHO), an estimated 700,000-1 million new cases arise annually. Effective control of sand fly vector populations is crucial for reducing the transmission of this disease.

View Article and Find Full Text PDF

Non-compaction cardiomyopathy (NCCM) or spongy myocardium is a rare type of congenital cardiomyopathy. Visceral leishmaniasis is a protozoal disease caused by and transmitted by the bite of female sand-fly species of , which is common in tropical areas like Sudan. We report a 6-year-old female, presented with a fever of unknown origin, weight loss, anemia that necessitated multiple blood transfusions and had hepatosplenomegaly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!