Software-Defined Networks (SDN) provides more control and network operation over a network infrastructure as an emerging and revolutionary paradigm in networking. Operating the many network applications and preserving the network services and functions, the SDN controller is regarded as the operating system of the SDN-based network architecture. The SDN has several security problems because of its intricate design, even with all its amazing features. Denial-of-service (DoS) attacks continuously impact users and Internet service providers (ISPs). Because of its centralized design, distributed denial of service (DDoS) attacks on SDN are frequent and may have a widespread effect on the network, particularly at the control layer. We propose to implement both MLP (Multilayer Perceptron) and CNN (Convolutional Neural Networks) based on conventional methods to detect the Denial of Services (DDoS) attack. These models have got a complex optimizer installed on them to decrease the false positive or DDoS case detection efficiency. We use the SHAP feature selection technique to improve the detection procedure. By assisting in the identification of which features are most essential to spot the incidents, the approach aids in the process of enhancing precision and flammability. Fine-tuning the hyperparameters with the help of Bayesian optimization to obtain the best model performance is another important thing that we do in our model. Two datasets, InSDN and CICDDoS-2019, are utilized to assess the effectiveness of the proposed method, 99.95% for the true positive (TP) of the CICDDoS-2019 dataset and 99.98% for the InSDN dataset, the results show that the model is highly accurate.

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312425PLOS

Publication Analysis

Top Keywords

distributed denial
8
denial services
8
services ddos
8
ddos attack
8
network
6
sdn
5
ddos
4
attack detection
4
detection sdn
4
sdn optimizer-equipped
4

Similar Publications

Software-Defined Networks (SDN) provides more control and network operation over a network infrastructure as an emerging and revolutionary paradigm in networking. Operating the many network applications and preserving the network services and functions, the SDN controller is regarded as the operating system of the SDN-based network architecture. The SDN has several security problems because of its intricate design, even with all its amazing features.

View Article and Find Full Text PDF

In the current cybersecurity landscape, Distributed Denial of Service (DDoS) attacks have become a prevalent form of cybercrime. These attacks are relatively easy to execute but can cause significant disruption and damage to targeted systems and networks. Generally, attackers perform it to make reprisal but sometimes this issue can be authentic also.

View Article and Find Full Text PDF

Denial-of-service (DoS) attacks and antagonistic interactions may exist in complex networks, which will destroy cooperative communication between agents and thus cannot realize collaborative tasks. Therefore, this paper studies time-varying formation tracking (TVFT) of heterogeneous multi-agent systems (HMASs) with DoS attacks and cooperative-antagonistic interactions. It aims to ensure system communication connectivity and allow followers to achieve distributed secure bipartite TVFT.

View Article and Find Full Text PDF

Enhanced technologies of the future are gradually improving the digital landscape. Internet of Things (IoT) technology is an advanced technique that is quickly increasing owing to the development of a network of organized online devices. In today's digital era, the IoT is considered one of the most robust technologies.

View Article and Find Full Text PDF

A cost-effective adaptive repair strategy to mitigate DDoS-capable IoT botnets.

PLoS One

December 2024

School of Big Data & Software Engineering, Chongqing University, Chongqing, China.

Distributed denial of service (DDoS) is a type of cyberattack in which multiple compromised systems flood the bandwidth or resources of a single system, making the flooded system inaccessible to legitimate users. Since large-scale botnets based on the Internet of Things (IoT) have been hotbeds for launching DDoS attacks, it is crucial to defend against DDoS-capable IoT botnets effectively. In consideration of resource constraints and frequent state changes for IoT devices, they should be equipped with repair measures that are cost-effective and adaptive to mitigate the impact of DDoS attacks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!