For lithium-ion batteries, silicon monoxide is a potential anode material, but its application is limited by its relatively large irreversible capacity loss, which leads to its low initial Coulombic efficiency (ICE). In this study, we conduct a two-step reaction for the formation of silicon oxide-based materials, including a magnesiothermic reduction of SiO with Mg, followed by the solid-state lithiation of silicon oxide with LiCO. Our results demonstrate that Mg can reduce SiO to Si and form MgSiO, while LiCO reacts with SiO to form LiSiO. MgSiO and LiSiO on the surface of SiO can effectively mitigate the irreversible loss of lithium ions, thus enhancing the ICE of SiO. The resulting SiO-Mg-LiCO-C nanostructure has an ICE of up to 91.1% and a relatively stable cycle performance. After 100 cycles at 0.5 C, the capacity is still 894.5 mAh g, and the capacity retention rate is 87.9%. A lithium-ion full battery with the commercial LiNiMnCoO (NCM811) as the cathode was assembled to test its practical applicability. The full cell exhibits a stable discharge capacity of 91.4 mAh g after 100 cycles at 1 C, with a capacity retention of 79.9%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c20201 | DOI Listing |
Phys Chem Chem Phys
January 2025
The University of New South Wales, Kensington, Australia.
Correction for 'Formulation and mechanism of copper tartrate - a novel anode material for lithium-ion batteries' by Matthew Teusner , , 2023, , 21436-21447, https://doi.org/10.1039/D3CP02030D.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
Lithium-ion battery cathodes are manufactured by coating slurries, liquid suspensions that typically include carbon black (CB), active material, and polymer binder. These slurries have a yield stress and complex rheology due to CB's microstructural response to flow. While optimizing the formulation and processing of slurries is critical to manufacturing defect-free and high-performance cathodes, engineering the shear rheology of cathode slurries remains challenging.
View Article and Find Full Text PDFACS Nano
January 2025
Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
With the increasing popularity of electric transportation over the past several years, fast-charging lithium-ion batteries are highly demanded for shortening electric vehicles' charging time. Extensive efforts have been made on material development and electrode engineering; however, few of them are scalable and cost-effective enough to be potentially incorporated into the current battery production. Here, we propose a facile magnetic templating method for preparing LiFePO (LFP) cathodes with vertically aligned graphene sheets to realize fast-charging properties at a practical loading of 20 mg cm.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Hubei Three Gorges Laboratory, Yichang 443000, China.
With the global surge in lithium-ion batteries (LIBs), recycling spent LIBs has become an essential and urgent research area. In the context of global efforts to promote sustainable development, and achieve energy conservation and emission reduction, advancing recycling technologies that efficiently recover critical metals like Ni, Co, Mn, and Li is crucial. Herein, a novel and environmentally friendly simplified process for selectively extracting critical metals from the mixed electrode materials of spent LIBs is proposed for the first time.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.
Lithium metal batteries (LMBs) are regarded as the potential alternative of lithium-ion batteries due to their ultrahigh theoretical specific capacity (3860 mAh g-1). However, severe instability and safety problems caused by the dendrite growth and inevitable side reactions have hindered the commercialization of LMBs. To solve them, in this contribution, a design strategy of soluble lithiophilic covalent organic frameworks (COFs) is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!