This study presents the fabrication of highly conducting Au fabric electrodes using a layer-by-layer (LBL) approach and its application toward energy storage. Through the ligand-exchange mechanism, the alternating layers of tris(2-aminoethyl)amine (TREN) and gold nanoparticles (Au NPs) encapsulated with tetraoctylammonium bromide (TOABr) ligands (Au-TOABr) were deposited onto the fabric to achieve a highly conducting Au fabric (0.12 Ω/□) at room temperature in just two LBL cycles. In contrast to several existing techniques, the current study realizes highly conducting Au fabric (7-15 Ω/□) in a layer-by-layer coating. The obtained Au fabrics demonstrate excellent stability against various deformations and abrasions, and its sheet resistance remained unaltered even after multiple cycles of bending, twisting, scotch tape adhesions, and sandpaper abrasions. In addition, the prepared Au fabrics exhibit high robustness toward various chemical media, highlighting their anticorrosive properties. Although Au fabrics showed a slight increase in sheet resistance postwashing and ultrasonication tests, it was got ridden by coating a thin layer of a biocompatible polydimethylsiloxane (PDMS) polymer. Besides enhancing the adhesion of Au NPs, PDMS coating offered a hydrophobic surface to fabrics rendering their use toward self-cleaning applications. High-performing energy storage devices integrated with wearable technologies are in great demand. In this context, here, electropolymerized polyaniline (PANI)-coated Au fabrics were employed to develop supercapacitors with remarkable energy-storing capability. In a symmetric two-electrode configuration, the device offered a maximum areal capacitance of 660 mF/cm with high areal energy and power densities of 58.64 μWh/cm and 22.86 mW/cm, respectively. The solid-state supercapacitor device (SSD) fabricated using Au/PANI-30 electrodes exhibited an areal capacitance of 495 mF/cm with energy and power densities of 33 μWh/cm and 10,660 μW/cm, respectively. This LBL method offers a significant advantage over existing techniques by offering simple room-temperature fabrication with excellent conductivity and adaptability to various substrates and with ease of scalability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c15201 | DOI Listing |
Chem Sci
January 2025
Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen Guangdong 518060 China
SbTe-based flexible thin films can be utilized in the fabrication of self-powered wearable devices due to their huge potential in thermoelectric performance. Although doping can significantly enhance the power factor value, the process of identifying suitable dopants is typically accompanied by numerous repeating experiments. Herein, we introduce Zn doping into thermally diffused p-type SbTe flexible thin films with a candidate dopant validated using the first-principles calculations.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Electrical Engineering, Feng Chia University, Taichung, 407802, Taiwan.
This study presents an innovative glucose detection platform, featuring a highly sensitive, non-enzymatic glucose sensor. The sensor integrates nickel nanowires and a graphene thin film deposited on the gate region of an extended-gate electric double-layer field-effect transistor (EGEDL-FET). This unique combination of materials and device structure enables superior glucose sensing performance.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
A one-step hydrothermal method was applied to prepare carbon dots (CDs) with superior fluorescence properties using chitosan as a carbon source. The as-prepared carbon dots were then grafted onto a sodium alginate-gelatin hydrogel film to form a fluorescent hydrogel film (FHGF), emitting at 450 nm under excitation of 350 nm light. In comparison to the CDs, the fluorescence intensity of this film was maintained over 90.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shandong University of Science and Technology, Institute of Carbon Neutrality, College of Chemical and Biological Engineering, No 579 Qianwangang Road, Huangdao District, 266590, Qingdao, CHINA.
Traditionally weak buried interaction without customized chemical bonding always goes against the formation of high-quality perovskite film that highly determines the efficiency and stability of perovskite solar cells. To address this issue, herein, we propose a bimolecular nucleophilic substitution reaction (SN2) driving strategy to idealize the robust buried interface by simultaneously decorating underlying substrate and functionalizing [PbX6]4- octahedral framework with iodoacetamide and thiol molecules, respectively. Theoretical and experimental results demonstrate that a strong SN2 reaction between exposed halogen and thiol group in two molecules occurs, which not only benefits the reinforcement of buried adhesion, but also triggers target-point-oriented crystallization, synergistically upgrading the upper perovskite film quality and accelerating interfacial charge extraction-transfer behavior.
View Article and Find Full Text PDFMater Horiz
January 2025
Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
Intelligent electronic textiles have important application value in the field of wearable electronics due to their unique structure, flexibility, and breathability. However, the currently reported electronic textiles are still challenged by issues such as their biocompatibility, photothermal conversion, and electromagnetic wave contamination. Herein, a multifunctional biomass-based conductive coating was developed using natural carboxymethyl starch (CMS), dopamine and polypyrrole (PPy) and then further employed for constructing multifunctional intelligent electronic textiles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!