Affinity capture (AC) combined with mass spectrometry (MS)-based proteomics is highly utilized throughout the drug discovery pipeline to determine small-molecule target selectivity and engagement. However, the tedious sample preparation steps and time-consuming MS acquisition process have limited its use in a high-throughput format. Here, we report an automated workflow employing biotinylated probes and streptavidin magnetic beads for small-molecule target enrichment in the 96-well plate format, ending with direct sampling from EvoSep Solid Phase Extraction tips for liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis. The streamlined process significantly reduced both the overall and hands-on time needed for sample preparation. Additionally, we developed a data-independent acquisition-mass spectrometry (DIA-MS) method to establish an efficient label-free quantitative chemical proteomic kinome profiling workflow. DIA-MS yielded a coverage of ∼380 kinases, a > 60% increase compared to using a data-dependent acquisition (DDA)-MS method, and provided reproducible target profiling of the kinase inhibitor dasatinib. We further showcased the applicability of this AC-MS workflow for assessing the selectivity of two clinical-stage CDK9 inhibitors against ∼250 probe-enriched kinases. Our study here provides a roadmap for efficient target engagement and selectivity profiling in native cell or tissue lysates using AC-MS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.4c00696 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!