Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich battery cathodes. In a recent publication in , Huang developed a multi-crystal rocking curve technique (combining X-ray and electron microscopy to capture both statistical and individual lattice distortions), which enables multiscale observations and further proves that the accumulation of the unrecoverable lattice rotation in cathodes upon repeated cycling exacerbates mechanical failure and electrochemical decay. The elucidation of failure mechanisms in single-crystalline cathodes offers valuable insights into the development of long-lasting and high-energy-density cathodes in next-generation batteries, encompassing strategies to mitigate lattice rotation and enhance lattice structure tolerance against lattice distortion within individual particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt03215b | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Hydrogen production via water-splitting or ammonia electrolysis using transition metal-based electrodes is one of the most cost-effective approaches. Herein, ca. 1-4% of Pt atoms are stuffed into a wolframite-type NiWO lattice to improve the electrocatalytic efficiency.
View Article and Find Full Text PDFDalton Trans
January 2025
National Engineering Research Center for Domestic & Building Ceramics, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China.
Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich battery cathodes. In a recent publication in , Huang developed a multi-crystal rocking curve technique (combining X-ray and electron microscopy to capture both statistical and individual lattice distortions), which enables multiscale observations and further proves that the accumulation of the unrecoverable lattice rotation in cathodes upon repeated cycling exacerbates mechanical failure and electrochemical decay. The elucidation of failure mechanisms in single-crystalline cathodes offers valuable insights into the development of long-lasting and high-energy-density cathodes in next-generation batteries, encompassing strategies to mitigate lattice rotation and enhance lattice structure tolerance against lattice distortion within individual particles.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
The structural stability of the energetic material 2,2',4,4',6,6'-hexanitrostilbene (-HNS) under high pressure is critical for optimizing its detonation performance and low sensitivity. However, its structural response to external pressure has not been sufficiently investigated. In this study, high-pressure single-crystal X-ray diffraction data of -HNS demonstrate that the sample exhibits pronounced anisotropic strain, demonstrating an unusual negative linear compressibility (NLC) along the axis, with a coefficient of -4.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
To provide insight into the interface structure in Ti particle-reinforced Mg matrix composites, this study investigates the inherent Mg/Ti interface structure formed during the solidification of supercooled Mg melt on a (0001)Ti substrate using ab initio molecular dynamics (AIMD) simulations and density function theory (DFT) calculation. The resulting interface exhibits an orientation relationship of 0001Mg//0001Ti with a lattice mismatch of approximately 8%. Detailed characterizations reveal the occurrences of 0001Mg plane rotation and vacancy formation to overcome the lattice mismatch at the inherent Mg/Ti interface while allowing Mg atoms to occupy the energetically favorable hollow sites above the Ti atomic layer.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Department of Chemistry, Wuhan University, Wuhan 430072, China. Electronic address:
3D printing is an additive manufacturing technology based on digital model files. 3D printing has become a popular manufacturing tool in various fields. Stereolithography offers a series of advantages compared to its counterparts, such as smooth prints, appropriate resolution in all the axes, acceptable organic solvent compatibility and sufficient tightness to the flowing of solutions/solvents at moderate/high pressure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!