Neurodegeneration is presumed to be the pathological process measure most proximal to clinical symptom onset in Alzheimer Disease (AD). Structural MRI is routinely collected in research and clinical trial settings. Several quantitative MRI-based measures of atrophy have been proposed, but their low correspondence with each other has been previously documented. The purpose of this study was to identify which commonly used structural MRI measure (hippocampal volume, cortical thickness in AD signature regions, or brain age gap [BAG]) had the best correspondence with the Clinical Dementia Rating (CDR) in an ethno-racially diverse sample. 2870 individuals recruited by the Healthy and Aging Brain Study-Health Disparities completed both structural MRI and CDR evaluation. Of these, 1887 individuals were matched on ethno-racial identity (Mexican American [MA], non-Hispanic Black [NHB], and non-Hispanic White [NHW]) and CDR (27% CDR > 0). We estimated brain age using two pipelines (DeepBrainNet, BrainAgeR) and then calculated BAG as the difference between the estimated brain age and chronological age. We also quantified their hippocampal volumes using HippoDeep and cortical thicknesses (both an AD-specific signature and average whole brain) using FreeSurfer. We used ordinal regression to evaluate associations between neuroimaging measures and CDR and to test whether these associations differed between ethno-racial groups. Higher BAG (p = 0.0002; p = 0.00117) and lower hippocampal volume (p = 0.0015) and cortical thickness (p < 0.0001) were associated with worse clinical status (higher CDR). AD signature cortical thickness had the strongest relationship with CDR (AIC = 2623, AIC = 2588, AIC = 2533, AIC = 2293, AIC = 1903). The relationship between CDR and atrophy measures differed between ethno-racial groups for both BAG estimates and hippocampal volume, but not for cortical thickness. We interpret the lack of an interaction between ethno-racial identity and AD signature cortical thickness on CDR as evidence that cortical thickness effectively captures sources of disease-related atrophy that may differ across racial and ethnic groups. Cortical thickness had the strongest association with CDR. These results suggest that cortical thickness may be a more sensitive and generalizable marker of neurodegeneration than hippocampal volume or BAG in ethno-racially diverse cohorts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hbm.70133 | DOI Listing |
Neurol Res
January 2025
Neurology Department, Faculty of Medicine, Cairo University, Giza, Cairo, Egypt.
Background: Endothelial dysfunction and inflammation are linked to migraine, which may contribute to atherogenesis and increase the risk of ischemia. In migraineurs, preclinical vascular involvement manifested as compromised structural characteristics of vessel wall has not received enough attention or evaluation.
Objectives: To measure plasma pentraxin 3 as an indicator of endothelial dysfunction in migraine in comparison to controls and to examine its correlation with clinical characteristics, headache severity, and brain magnetic resonance imaging findings.
Behav Brain Res
January 2025
Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Cyceron, 14000 Caen, France; Institut Universitaire de France (IUF).
Background: While Alcohol Use Disorder (AUD) is frequently associated with impulsivity, its structural brain substrates are still poorly defined. The triadic model of addiction postulates that impulsive behavior is regulated by an amygdalo-striatal impulsive subcomponent, a prefrontal and cerebellar reflective subcomponent, and an insular regulatory subcomponent. The objective of this study was thus to examine the relationships between self-evaluated impulsivity and structural brain abnormalities in patients with severe AUD (sAUD) using the triadic model as a theoretical framework.
View Article and Find Full Text PDFMol Genet Metab
January 2025
Image Processing & Analysis Core (iPAC), Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA. Electronic address:
Objective: GM1 gangliosidosis is a rare lysosomal storage disorder characterized by the accumulation of GM1 gangliosides in neuronal cells, resulting in severe neurodegeneration. Currently, limited data exists on the brain volumetric changes associated with this disease. This study focuses on the late-infantile and juvenile subtypes of type II GM1 gangliosidosis, aiming to quantify brain volumetric characteristics to track disease progression.
View Article and Find Full Text PDFJ Neurol Sci
January 2025
Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
Background: Several studies show that optical coherence tomography (OCT) metrics e with cognition, disability, and brain structure in people with multiple sclerosis (PwMS). This review the correlation between OCT parameters and magnetic resonance imaging (MRI) measurements in PwMS.
Methods: A comprehensive search of PubMed/MEDLINE, Embase, Scopus, and Web of Science was performed, including studies published in English up to November 29, 2024 to identify studies reporting quantitative data on the correlation between baseline OCT parameters and MRI measurements in PwMS.
J Med Internet Res
January 2025
Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.
Background: Despite the increasing popularity of electronic devices, the longitudinal effects of daily prolonged electronic device usage on brain health and the aging process remain unclear.
Objective: The aim of this study was to investigate the impact of the daily use of mobile phones/computers on the brain structure and the risk of neurodegenerative diseases.
Methods: We used data from the UK Biobank, a longitudinal population-based cohort study, to analyze the impact of mobile phone use duration, weekly usage time, and playing computer games on the future brain structure and the future risk of various neurodegenerative diseases, including all-cause dementia (ACD), Alzheimer disease (AD), vascular dementia (VD), all-cause parkinsonism (ACP), and Parkinson disease (PD).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!