Fencing is one of the most widely utilized tools for reducing human-wildlife conflict in agricultural landscapes. However, the increasing global footprint of fencing exceeds millions of kilometers and has unintended consequences for wildlife, including habitat fragmentation, movement restriction, entanglement, and mortality. Here, we present a novel and quantitative approach to prioritize fence removal within historic migratory pathways of white-bearded wildebeest (Connochaetes taurinus) across Kenya's Greater Masai Mara Ecosystem. Our approach first assesses historic and contemporary landscape connectivity of wildebeest between seasonal ranges by incorporating two sets of GPS tracking data and fine-scale fencing data. We then predict connectivity gains from simulated fence removal and evaluate the impact of different corridor widths and locations on connectivity and removal costs derived from locally implemented interventions. Within the study system, we found that modest levels of fence removal resulted in substantial connectivity gains (39%-54% improvement in connectivity for 15-140 km of fence line removed). By identifying the most suitable corridor site, we show that strategically placed narrow corridors outperform larger, more expensive interventions. Our results demonstrate how and where targeted fence removal can enhance connectivity for wildlife. Our framework can aid in identifying suitable and cost-effective corridor restoration sites to guide decision-makers on the removal of fences and other linear barriers. Our approach is transferable to other landscapes where the removal or modification of fences or similar barriers is a feasible mitigation strategy to restore habitat and migratory connectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eap.3094DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771689PMC

Publication Analysis

Top Keywords

fence removal
20
targeted fence
8
removal
8
connectivity
8
connectivity gains
8
identifying suitable
8
fence
6
predicting impact
4
impact targeted
4
removal connectivity
4

Similar Publications

Fencing is one of the most widely utilized tools for reducing human-wildlife conflict in agricultural landscapes. However, the increasing global footprint of fencing exceeds millions of kilometers and has unintended consequences for wildlife, including habitat fragmentation, movement restriction, entanglement, and mortality. Here, we present a novel and quantitative approach to prioritize fence removal within historic migratory pathways of white-bearded wildebeest (Connochaetes taurinus) across Kenya's Greater Masai Mara Ecosystem.

View Article and Find Full Text PDF

Adjustment of Molecular Sorption Equilibrium on Catalyst Surface for Boosting Catalysis.

Acc Chem Res

January 2025

Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.

View Article and Find Full Text PDF

Clarification of Bio-Degumming Enzymes Based on a Visual Analysis of the Hemp Roving Structure.

Polymers (Basel)

December 2024

Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.

Hemp fibers, recognized for their breathability, specific strength, and ultraviolet resistance, are widely utilized in textile manufacturing and composite materials. Bio-degumming is a promising alternative technology to traditional chemical degumming that can be used to produce hemp fibers due to its eco-friendly nature. However, its lower efficiency has hindered its widespread adoption.

View Article and Find Full Text PDF

Understanding the process of genetic adaptation in response to human-mediated ecological change will help elucidate the eco-evolutionary impacts of human activity. In the 1930s red imported fire ants (Solenopsis invicta) were accidently introduced to the Southeastern USA, where today they are both venomous predators and toxic prey to native eastern fence lizards (Sceloporus undulatus). Here, we investigate potential lizard adaptation to invasive fire ants by generating whole-genome sequences from 420 lizards across three populations: one with long exposure to fire ants, and two unexposed populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!