Purpose: Glioblastoma multiforme (GBM) is an aggressive brain tumor. This meta-analysis investigates the association between HOTAIR expression levels and GBM.

Methods: We searched the literature for studies on HOTAIR expression in GBM patients. A meta-analysis of nine studies assessed standardized mean difference (SMD) and 95% confidence intervals (CIs) using a random-effects model. Subgroup analyses were performed based on sample source, country, and study design. Additionally, we conducted meta-regression and publication bias analyses.

Results: The meta-analysis found a significant positive association between elevated HOTAIR expression and GBM (SMD = 8.3, 95% CI 5.8-10.8,  = 0.00). Considerable heterogeneity was observed (Q-value: 1174.2, df = 9, I = 99.2%,  = 0.00). Subgroup analyses indicated significant associations in tissue samples and studies from the USA and China. Meta-regression revealed that study design and country contributed to the observed heterogeneity, with no significant publication bias detected.

Conclusion: This analysis confirms the significant link between HOTAIR expression and GBM, highlighting HOTAIR as a potential therapeutic target and biomarker. Further research is necessary to clarify the biological mechanisms involved in this association.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17520363.2025.2455925DOI Listing

Publication Analysis

Top Keywords

hotair expression
20
expression gbm
12
glioblastoma multiforme
8
subgroup analyses
8
study design
8
publication bias
8
hotair
6
expression biomarker
4
biomarker glioblastoma
4
multiforme comprehensive
4

Similar Publications

Purpose: Glioblastoma multiforme (GBM) is an aggressive brain tumor. This meta-analysis investigates the association between HOTAIR expression levels and GBM.

Methods: We searched the literature for studies on HOTAIR expression in GBM patients.

View Article and Find Full Text PDF

Tamoxifen is one of the most frequently used endocrine medications for the treatment of estrogen receptor-positive (ER + ) breast cancer (BC). Unfortunately, tamoxifen resistance (TR) brings more challenges to the clinical treatment, and the mechanisms of TR have not yet been fully clarified. HGF/c-Met is closely associated with cancer metastasis, but whether it is involved in TR remains unclear.

View Article and Find Full Text PDF

Prostate cancer (PC) ranks among the most prevalent cancers in males. Recent studies have highlighted intricate connections between long non-coding RNAs (lncRNAs), natural products, and cellular signaling in PC development. LncRNAs, which are RNA transcripts without protein-coding function, influence cell growth, programmed cell death, metastasis, and resistance to treatments through pathways like PI3K/AKT, WNT/β-catenin, and androgen receptor signaling.

View Article and Find Full Text PDF

Background: Recent studies have highlighted the potential role of several long non-coding RNAs (lncRNAs) in the pathogenesis of Behçet's disease (BD). This study investigated the expression profiles of lncRNA NEAT1 and lncRNA HOTAIR, and their target cytokine genes, IL-6 and TNF-α, in active and inactive BD patients.

Methods: This cross-sectional study was conducted on peripheral blood mononuclear cells (PBMCs) obtained from 25 BD patients and 25 age-sex-matched healthy controls (HCs).

View Article and Find Full Text PDF

LncRNA HOTAIR regulates the expression of MRP1 gene through the mir-6807-5p/Egr1 axis to affect the multidrug resistance of lung cancer cells.

Gene

March 2025

Department of Life Science and Agroforestry, Qiqihar University, 42 Wenhua Street, Qiqihar 161006, Heilongjiang Province, China; Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar University, 42 Wenhua Street, Qiqihar 161006, Heilongjiang Province, China. Electronic address:

Multi-drug resistance-associated protein 1 (MRP1) plays critical roles in the multi-drug resistance (MDR) of cancer cells, LncRNA HOTAIR is closely related to MDR in lung cancer, however, the effects of HOTAIR on MRP1 expression and MDR in lung cancer cells (A549/DDP) remain unknown. In this study, the effects of HOTAIR on MRP1 gene expression and MDR in A549/DDP cells were monitored. LncRNA HOTAIR was upregulated in A549/DDP cells, and overexpression of HOTAIR promoted MRP1 expression and MDR development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!