Introduction: The generalizability of neuroimaging and cognitive biomarkers in their sensitivity to detect preclinical Alzheimer's disease (AD) and power to predict progression in large, multisite cohorts remains unclear.
Method: Longitudinal demographics, T1-weighted magnetic resonance imaging (MRI), and cognitive scores of 3036 cognitively unimpaired (CU) older adults (amyloid beta [Aβ]-negative/positive [A-/A+]: 1270/1558) were included. Cross-sectional and longitudinal cognition and medial temporal lobe (MTL) structural measures were extracted. Cross-sectional MTL tau burden (T) was computed from tau positron emission tomography (N = 1095).
Results: We found cross-sectional tau and longitudinal structural biomarkers best separated A+ CU from A- CU. A-T+ CU had significantly faster neurodegeneration rate compared to A-T- CU. MTL tau was significantly correlated with MRI and cognitive biomarkers regardless of Aβ status. MTL tau, MRI, and cognition provided complementary information about disease progression.
Discussion: This large multisite study replicates prior findings in CU older adults, supporting the utility of neuroimaging and cognitive biomarkers in preclinical AD clinical trials and normal aging studies.
Highlights: We investigated neuroimaging and cognitive biomarkers in 3036 cognitively unimpaired (CU) participants. Medial temporal lobe (MTL) tau and longitudinal MTL atrophy best separate amyloid beta positive (A+) CU from amyloid beta negative (A-) CU. A- tau positive (T+) CU had a significantly faster neurodegeneration rate compared to A-T- CU. MTL tau correlated with structural magnetic resonance imaging (MRI) and cognition regardless of amyloid beta status. Combined baseline MTL tau, MRI, and cognition best predict Alzheimer's disease progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/alz.14492 | DOI Listing |
Alzheimers Dement
January 2025
Penn Memory Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Introduction: The generalizability of neuroimaging and cognitive biomarkers in their sensitivity to detect preclinical Alzheimer's disease (AD) and power to predict progression in large, multisite cohorts remains unclear.
Method: Longitudinal demographics, T1-weighted magnetic resonance imaging (MRI), and cognitive scores of 3036 cognitively unimpaired (CU) older adults (amyloid beta [Aβ]-negative/positive [A-/A+]: 1270/1558) were included. Cross-sectional and longitudinal cognition and medial temporal lobe (MTL) structural measures were extracted.
Cortex
January 2025
School of Psychology, Liverpool John Moores University, United Kingdom.
Background: Alzheimer's disease (AD) can be diagnosed by in vivo abnormalities of amyloid-β plaques (A) and tau accumulation (T) biomarkers. Previous studies have shown that analyses of serial position performance in episodic memory tests, and especially, delayed primacy, are associated with AD pathology even in individuals who are cognitively unimpaired. The earliest signs of cortical tau pathology are observed in medial temporal lobe (MTL) regions, yet it is unknown if serial position markers are also associated with early tau load in these regions.
View Article and Find Full Text PDFSci Data
December 2024
Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
Interictal epileptiform discharges (IEDs) such as spikes and sharp waves represent pathological electrophysiological activities occurring in epilepsy patients between seizures. IEDs occur preferentially during non-rapid eye movement (NREM) sleep and are associated with impaired memory and cognition. Despite growing interest, most studies involving IED detections rely on visual annotations or employ simple amplitude threshold approaches.
View Article and Find Full Text PDFNeuroimage Clin
December 2024
Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. Electronic address:
Background: Lewy body disorders (LBD), encompassing Parkinson disease (PD), PD dementia (PDD), and dementia with Lewy bodies (DLB), are characterized by alpha-synuclein pathology but often are accompanied by Alzheimer's disease (AD) neuropathological change (ADNC). The medial temporal lobe (MTL) is a primary locus of tau accumulation and associated neurodegeneration in AD. However, it is unclear the extent to which AD copathology in LBD (LBD/AD+) contributes to MTL-specific patterns of degeneration.
View Article and Find Full Text PDFAlzheimers Res Ther
November 2024
Center for Molecular & Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Suite 209, Newark, NJ, 07102, USA.
Background: Phosphorylated tau (p-tau) and amyloid beta (Aβ) in human plasma may provide an affordable and minimally invasive method to evaluate Alzheimer's disease (AD) pathophysiology. The medial temporal lobe (MTL) is susceptible to changes in structural integrity that are indicative of the disease progression. Among healthy adults, higher dynamic network flexibility within the MTL was shown to mediate better generalization of prior learning, a measure which has been demonstrated to predict cognitive decline and neural changes in preclinical AD longitudinally.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!