Introduction: Malnutrition correlates with neuropsychiatric symptoms (NPSs) in Alzheimer's disease (AD); however, the potential mechanism underlying this association remains unclear.

Methods: Baseline and longitudinal associations of nutritional status with NPSs were analyzed in 374 patients on the AD continuum and 61 healthy controls. Serum biomarkers, behavioral tests, cerebral neurotransmitters, and differentially gene expression were evaluated in standard and malnourished diet-fed transgenic APPswe/PSEN1dE9 (APP/PS1) mice.

Results: Poor nutritional status and increased cerebral blood flow in the midbrain and striatum were associated with severe general NPSs and subtypes, especially depression, anxiety, and apathy. APP/PS1 mice fed a malnourished diet showed poor nutritional status, depression- and anxiety-like behaviors, altered neurotransmitter levels, and downregulated c-Fos expression in the midbrain and striatum; these were associated with suppressed cyclic adenosine monophosphate (cAMP) signaling pathway.

Discussion: Malnutrition exacerbating NPSs is relevant to suppressed cAMP pathway in the midbrain and striatum, suggesting the potential for targeted nutritional interventions to mitigate NPSs in the AD continuum.

Highlights: Poor nutritional status linked to general and specific neuropsychiatric symptom (NPS) deterioration. Malnutrition affects NPSs, usually involving the midbrain and striatum. Malnourished diet induces depression- and anxiety-like behaviors in APP/PS1 mice. Malnutrition exacerbates NPSs associated with cAMP signaling pathway in the midbrain and striatum.

Download full-text PDF

Source
http://dx.doi.org/10.1002/alz.14506DOI Listing

Publication Analysis

Top Keywords

midbrain striatum
20
nutritional status
16
camp signaling
12
poor nutritional
12
malnutrition exacerbating
8
neuropsychiatric symptoms
8
signaling pathway
8
striatum associated
8
app/ps1 mice
8
malnourished diet
8

Similar Publications

Recreational use of nitrous oxide (NO) has risen dramatically over the past decades. This study aimed to examine its rewarding effect and the underlying mechanisms. The exposure of mice to a subanesthetic concentration (20%) of NO for 30 min for 4 consecutive days paired with NO in the morning and paired with the air in the afternoon produced apparent rewarding behavior in the conditioned place preference (CPP) paradigm.

View Article and Find Full Text PDF

Introduction: Malnutrition correlates with neuropsychiatric symptoms (NPSs) in Alzheimer's disease (AD); however, the potential mechanism underlying this association remains unclear.

Methods: Baseline and longitudinal associations of nutritional status with NPSs were analyzed in 374 patients on the AD continuum and 61 healthy controls. Serum biomarkers, behavioral tests, cerebral neurotransmitters, and differentially gene expression were evaluated in standard and malnourished diet-fed transgenic APPswe/PSEN1dE9 (APP/PS1) mice.

View Article and Find Full Text PDF

Background: This study investigates the protective properties of melatonin in an Parkinson's disease (PD) model, focusing on the underlying mechanisms involving heat shock proteins (HSPs).

Methods: Twelve adult male C57BL/6 mice were randomly divided into four groups (normal control, melatonin control, Parkinson's model, and melatonin treatment; = 3 per group) and housed in a single cage. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was injected intraperitoneally in the Parkinson's model and treatment groups to establish a subacute PD model, while controls received saline.

View Article and Find Full Text PDF

Background: Circulating levels of the female hormone estrogen has been associated with the development of Parkinson's disease (PD), although the underlying mechanism remains unclear. Immune homeostasis mediated by peripheral regulatory T cells (Treg) is a crucial factor in PD. The aim of this study was to explore the effects of estrogen deficiency on neuroinflammation and neurodegeneration in a rodent model of PD, with particular reference to Treg.

View Article and Find Full Text PDF

Degeneration of midbrain nigrostriatal dopaminergic neurons is a pathological hallmark of Parkinson's disease (PD). Peripheral delivery of a compound(s) to arrest or slow this dopaminergic degeneration is a key therapeutic goal. Pan-inhibitors of histone deacetylase (HDAC) enzymes, key epigenetic regulators, have shown therapeutic promise in PD models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!