Introduction: Traditional multivariate methods for neuroimaging studies overlook the interdependent relationship between brain features. This study addresses this gap by analyzing relative brain volumetric patterns to capture how Alzheimer's disease (AD) and genetics influence brain structure along the disease continuum.

Methods: This study analyzed data from participants across the AD continuum from the Alzheimer's and Families (ALFA) and Alzheimer's Disease Neuroimaging Initiative (ADNI) studies. Compositional data analysis (CoDA) was exploited to examine relative brain volumetric variations that (1) were linked to different AD stages compared to cognitively unimpaired amyloid-β-negative (CU A-) individuals and (2) varied by AD genetic risk.

Results: Disease stage-specific compositional brain scores were identified, differentiating CU A- individuals from those in more advanced stages. Genetic risk-stratified models revealed a broader genetic landscape affecting brain morphology in AD, beyond the well-known apolipoprotein E ε4 allele.

Discussion: CoDA emerges as an alternative multivariate framework to deepen understanding of AD-related structural changes and support targeted interventions for those at higher genetic risk.

Highlights: Compositional data analysis (CoDA) revealed the relative variation of brain region volumes, captured in compositional brain scores, capable of discerning between cognitively unimpaired amyloid-β-negative individuals and subjects within other disease-stage groups along the Alzheimer's disease (AD) continuum. CoDA also uncovered the genetic vulnerability of specific brain regions at each stage of the disease along the continuum. CoDA is capable of integrating magnetic resonance imaging data from two different cohorts without stringent requirements for harmonization. This translates as an advantage, compared to traditional methods, and strengthens the reliability of cross-study comparisons by standardizing the data despite different labeling agreements, facilitating collaborative and large-scale research. The algorithm is sensitive to AD-specific effects, as the main compositional brain scores display little overlap with the age-specific compositional brain score. CoDA provides a more accurate analysis of brain imaging data addressing its compositional nature, which can influence the development of targeted approaches, opening new avenues for enhancing brain health.

Download full-text PDF

Source
http://dx.doi.org/10.1002/alz.14490DOI Listing

Publication Analysis

Top Keywords

compositional brain
20
brain scores
16
brain
14
disease continuum
12
alzheimer's disease
12
compositional
8
capture alzheimer's
8
relative brain
8
brain volumetric
8
compositional data
8

Similar Publications

Effective, scalable dementia prevention interventions are needed to address modifiable risk factors given global burden of dementia and challenges in developing disease-modifying treatments. A single-blind randomized controlled trial assessed an online multidomain lifestyle intervention to prevent cognitive decline over 3 years. Participants were dementia-free community-dwelling Australians aged 55-77 years with modifiable dementia risk factors.

View Article and Find Full Text PDF

Association between exposure to 35 environmental pollutants and mortality from cerebrovascular diseases: A long-term prospective study.

Ecotoxicol Environ Saf

January 2025

Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Clinical Research Unit, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China. Electronic address:

Environmental pollutants have been implicated in various detrimental health effects. However, the specific relationship between environmental pollutant exposure and the risk of cerebrovascular disease mortality remains uncertain. This study aimed to comprehensively explore the potential relationship between environmental pollutant exposure and risk of cerebrovascular disease mortality in the U.

View Article and Find Full Text PDF

Background: The Woven EndoBridge 17 (WEB-17) is the latest advancement in the WEB device family. Comprehensive data on its occlusion rates, procedural complications, and mortality is lacking. This meta-analysis aimed to evaluate the efficacy and safety of the WEB-17 device in intracranial aneurysms (IAs).

View Article and Find Full Text PDF

Diet-Microbiome-ENS connection: Impact of the Cafeteria Diet.

Am J Physiol Gastrointest Liver Physiol

January 2025

Digestive Diseases, Emory University, Atlanta, GA, United States.

The interplay between diet-induced obesity and gastrointestinal dysfunction is an evolving area of research with far-reaching implications for understanding the gutbrain axis interactions. In their study, Ramírez-Maldonado et al. employ a cafeteria (CAF) diet model to investigate the effects on gut microbiota, enteric nervous system (ENS) integrity and function, and gastrointestinal motility in mice.

View Article and Find Full Text PDF

Bioaugmented design and functional evaluation of low damage implantable array electrodes.

Bioact Mater

May 2025

State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China.

Implantable neural electrodes are key components of brain-computer interfaces (BCI), but the mismatch in mechanical and biological properties between electrode materials and brain tissue can lead to foreign body reactions and glial scarring, and subsequently compromise the long-term stability of electrical signal transmission. In this study, we proposed a new concept for the design and bioaugmentation of implantable electrodes (bio-array electrodes) featuring a heterogeneous gradient structure. Different composite polyaniline-gelatin-alginate based conductive hydrogel formulations were developed for electrode surface coating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!