The Ca 3.2 isoform of T-type voltage-gated calcium channels plays a crucial role in regulating the excitability of nociceptive neurons; the endogenous molecules that modulate its activity, however, remain poorly understood. Here, we used serum proteomics and patch-clamp physiology to discover a novel peptide albumin (1-26) that facilitates channel gating by chelating trace metals that tonically inhibit Ca 3.2 H191 residue. Importantly, serum also potently modulated T-currents in human and rodent dorsal root ganglion (DRG) neurons. pain studies revealed that injections of serum and albumin (1-26) peptide resulted in robust mechanical and heat hypersensitivity. This hypersensitivity was abolished with a T-channel inhibitor, in Ca 3.2 null mice and in Ca 3.2 H191Q knock-in mice. The discovery of endogenous chelators of trace metals in the serum deepens our understanding of the role of Ca 3.2 channels in neuronal hyperexcitability and may facilitate the design of novel analgesics with unique mechanisms of action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760774PMC
http://dx.doi.org/10.1101/2025.01.03.631165DOI Listing

Publication Analysis

Top Keywords

channel gating
8
albumin 1-26
8
trace metals
8
facilitation channel
4
gating pain
4
pain pathways
4
pathways reveals
4
reveals novel
4
novel mechanism
4
mechanism serum-induced
4

Similar Publications

hERGAT: predicting hERG blockers using graph attention mechanism through atom- and molecule-level interaction analyses.

J Cheminform

January 2025

Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, Republic of Korea.

The human ether-a-go-go-related gene (hERG) channel plays a critical role in the electrical activity of the heart, and its blockers can cause serious cardiotoxic effects. Thus, screening for hERG channel blockers is a crucial step in the drug development process. Many in silico models have been developed to predict hERG blockers, which can efficiently save time and resources.

View Article and Find Full Text PDF

Evaluation of professional practices in the use of mexiletine for the management of childhood myotonia in French pediatric neuromuscular centers (MEXI-PEDI survey).

Arch Pediatr

January 2025

CMR Neuromusculaire, Service de génétique médicale, Hôpital Estaing, CHU de Clermont-Ferrand, Clermont-Ferrand, France. Electronic address:

Background: Myotonia is the main feature of both myotonic dystrophy (DM) and non-dystrophic myotonia (NDM). It is felt as stiffness, pain, fatigue, and weakness. In France, mexiletine, a non-selective voltage-gated sodium channel blocker, is approved for the treatment of myotonia in adults with NDM, and it has a temporary recommendation for use in the symptomatic treatment of DM in adults.

View Article and Find Full Text PDF

A novel separated OPECT aptasensor based on MOF-derived BiVO/BiS type-II heterojunction for rapid detection of bacterial quorum sensing signal molecules.

Talanta

January 2025

Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China. Electronic address:

Quorum sensing signal molecules released by microorganisms serve as critical biomarkers regulating the attachment and aggregation of marine microbes on engineered surfaces. Hence, the development of efficient and convenient methods for detecting quorum sensing signal molecules is crucial for monitoring and controlling the formation and development of marine biofouling. Advanced optoelectronic technologies offer increased opportunities and methods for detecting quorum sensing signal molecules, thereby enhancing the accuracy and efficiency of detection.

View Article and Find Full Text PDF

Insight into the Mechanism of d-Glucose Accelerated Exchange in GLUT1 from Molecular Dynamics Simulations.

Biochemistry

January 2025

BHF Centre of Research Excellence, School of Medicine and Life Sciences, King's College London, London SE1 9NH, United Kingdom.

Transmembrane glucose transport, facilitated by glucose transporters (GLUTs), is commonly understood through the simple mobile carrier model (SMCM), which suggests that the central binding site alternates exposure between the inside and outside of the cell, facilitating glucose exchange. An alternative "multisite model" posits that glucose transport is a stochastic diffusion process between ligand-operated gates within the transporter's central channel. This study aims to test these models by conducting atomistic molecular dynamics simulations of multiple glucose molecules docked along the central cleft of GLUT1 at temperatures both above and below the lipid bilayer melting point.

View Article and Find Full Text PDF

The Varroa destructor (hereafter referred to as Varroa) is a major pest of honeybees that is generally controlled using pyrethroid-based acaricides. However, resistance to these insecticides has become a growing problem, driven by the acquisition of knockdown resistance (kdr) mutations in the mite's voltage-gated sodium channel (vgsc) gene. Resistance mutations in the vgsc gene, such as the L925V mutation, can confer resistance to pyrethroids like flumethrin and tau-fluvalinate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!