Elucidating ancestry-specific structures in admixed populations is crucial for comprehending population history and mitigating confounding effects in genome-wide association studies. Existing methods for elucidating the ancestry-specific structures generally rely on frequency-based estimates of genetic relationship matrix (GRM) among admixed individuals after masking segments from ancestry components not being targeted for investigation. However, these approaches disregard linkage information between markers, potentially limiting their resolution in revealing structure within an ancestry component. We introduce ancestry-specific expected GRM (as-eGRM), a novel framework for elucidating the relatedness within ancestry components between admixed individuals. The key design of as-eGRM consists of defining ancestry-specific pairwise relatedness between individuals based on genealogical trees encoded in the Ancestral Recombination Graph (ARG) and local ancestry calls and computing the expectation of the ancestry-specific relatedness across the genome. Comprehensive evaluations using both simulated stepping-stone models of population structure and empirical datasets based on three-way admixed Latino cohorts showed that analysis based on as-eGRM robustly outperforms existing methods in revealing the structure in admixed populations with diverse demographic histories. Taken together, as-eGRM has the promise to better reveal the fine-scale structure within an ancestry component of admixed individuals, which can help improve the robustness and interpretation of findings from association studies of disease or complex traits for these understudied populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761683 | PMC |
http://dx.doi.org/10.1101/2025.01.10.632475 | DOI Listing |
Elucidating ancestry-specific structures in admixed populations is crucial for comprehending population history and mitigating confounding effects in genome-wide association studies. Existing methods for elucidating the ancestry-specific structures generally rely on frequency-based estimates of genetic relationship matrix (GRM) among admixed individuals after masking segments from ancestry components not being targeted for investigation. However, these approaches disregard linkage information between markers, potentially limiting their resolution in revealing structure within an ancestry component.
View Article and Find Full Text PDFTransl Psychiatry
January 2024
Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
Insulin resistance and glucose metabolism have been associated with neurodevelopmental disorders. However, in the metabolically more susceptible Asian populations, it is not clear whether the genetic burden of glycaemic dysregulation influences early-life neurodevelopment. In a multi-ethnic Asian prospective cohort study in Singapore (Growing Up in Singapore Towards healthy Outcomes (GUSTO)), we constructed child and parental polygenic risk scores (PRS) for glycaemic dysregulation based on the largest genome-wide association studies of type 2 diabetes and fasting glucose among Asians.
View Article and Find Full Text PDFCancer Res Commun
October 2023
Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
Unlabelled: African American (AA) women have an excessive risk of developing triple-negative breast cancer (TNBC). We employed Assay for Transposase-Accessible Chromatin using sequencing to characterize differences in chromatin accessibility between nine commonly used TNBC cell lines derived from patients of European and African ancestry. Principal component and chromosome mapping analyses of accessibility peaks with the most variance revealed separation of chromatin profiles by patient group.
View Article and Find Full Text PDFLancet Neurol
November 2023
College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria; Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria. Electronic address:
Background: An understanding of the genetic mechanisms underlying diseases in ancestrally diverse populations is an important step towards development of targeted treatments. Research in African and African admixed populations can enable mapping of complex traits, because of their genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. We aimed to do a comprehensive genome-wide assessment in African and African admixed individuals to better understand the genetic architecture of Parkinson's disease in these underserved populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!