The use of incretin analogues has emerged in recent years as an effective approach to achieve both enhanced insulin secretion and weight loss in type 2 diabetes (T2D) patients. Agonists which bind and stimulate multiple receptors have shown particular promise. However, off target effects, including nausea and diarrhoea, remain a complication of using these agents, and modified versions with optimized pharmacological profiles and/or biased signaling at the cognate receptors are increasingly sought. Here, we describe the synthesis and properties of a molecule which binds to both glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors (GLP-1R and GIPR) to enhance insulin secretion. HISHS-2001 shows increased affinity at the GLP-1R, as well as a tendency towards reduced internalization and recycling at this receptor FDA-approved dual GLP-1R/GIPR agonist tirzepatide. HISHS-2001 also displayed significantly greater bias towards cAMP generation β-arrestin 2 recruitment compared to tirzepatide. In contrast, G recruitment was lower tirzepatide at the GLP-1R, but higher at the GIPR. Administered to obese hyperglycaemic mice, HISHS-2001 increased circulating insulin whilst lowering body weight and HbA1c with similar efficacy to tirzepatide at substantially lower doses. Thus, HISHS-2001 represents a novel dual receptor agonist with an improved pharmacological profile.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760779PMC
http://dx.doi.org/10.1101/2025.01.13.632834DOI Listing

Publication Analysis

Top Keywords

insulin secretion
12
hishs-2001 increased
8
hishs-2001
5
binding kinetics
4
kinetics bias
4
bias receptor
4
receptor internalization
4
internalization effects
4
insulin
4
effects insulin
4

Similar Publications

Pancreatic β-cell damage is a critical pathological mechanism in the progression of obese type 2 diabetes mellitus (T2DM). However, the exact underlying mechanism remains unclear. We established an obese T2DM mouse model via high-fat diet feeding.

View Article and Find Full Text PDF

The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.

View Article and Find Full Text PDF

Glucose Metabolic Abnormalities and Their Interaction With Defective Phosphate Homeostasis in Tumor-induced Osteomalacia.

J Clin Endocrinol Metab

January 2025

Department of Endocrinology, Key Laboratory of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Dongcheng District, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.

Context: Phosphate homeostasis was compromised in tumor-induced osteomalacia (TIO) due to increased fibroblast growth factor 23 (FGF23) secretion. Nevertheless, the glucose metabolic profile in TIO patients has not been investigated.

Objectives: This work aimed to clarify the glucose metabolic profiles in TIO patients and explore their interaction with impaired phosphate homeostasis.

View Article and Find Full Text PDF

The herbal extracts of four traditional plants; namely leaves, fruits leaves, and seeds, were identified for their main constituents using UHPLC/QTOF-MS/MS. Then, a pharmacology-based analysis and molecular docking verification were established targeting the evaluation of each individual herbal extract for their antidiabetic/anti-obesity potential besides their safety. Streptozotocin-induced diabetic rats were used to evaluate antiobesity and insulinotropic effects against insulin (10 U/Kg, IP) and metformin (100 mg/Kg, per oral) as standard regimens.

View Article and Find Full Text PDF

Type 2 diabetes: a sacrifice program handling energy surplus.

Life Metab

December 2024

Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China.

Type 2 diabetes mellitus (T2DM) is closely associated with obesity, while interactions between the two diseases remain to be fully elucidated. To this point, we offer this perspective to introduce a set of new insights into the interpretation of T2DM spanning the etiology, pathogenesis, and treatment approaches. These include a definition of T2DM as an energy surplus-induced diabetes characterized by the gradual decline of β cell insulin secretion function, which ultimately aims to prevent the onset of severe obesity through mechanisms of weight loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!