Unlabelled: Immune escape is a critical hallmark of cancer progression and underlies resistance to multiple immunotherapies. However, it remains unclear when the genetic events associated with immune escape occur during cancer development. Here, we integrate functional genomics studies of immunomodulatory genes with a tumor evolution reconstruction approach to infer the evolution of immune escape across 38 cancer types from the Pan-Cancer Analysis of Whole Genomes dataset. Different cancers favor mutations in different immunomodulatory pathways. For example, the antigen presentation machinery is highly mutated in colorectal adenocarcinoma, lung squamous cell carcinoma, and chromophobe renal cell carcinoma, and the protein methylation pathway is highly mutated in bladder transitional cell carcinoma and lung adenocarcinoma. We also observe different timing patterns in multiple immunomodulatory pathways. For instance, mutations impacting genes involved in cellular amino acid metabolism were more likely to happen late in pancreatic adenocarcinoma. Mutations in the glucocorticoid receptor regulatory network pathway tended to occur early, while mutations in the TNF pathways were more likely to occur late in B-cell non-Hodgkin lymphoma. Mutations in the NOD1/2 signaling pathway and DNA binding transcription factor activity tended to happen late in breast adenocarcinoma and ovarian adenocarcinoma. Together, these results delineate the evolutionary trajectories of immune escape in different cancer types and highlight opportunities for improved immunotherapy of cancer.
Significance: Despite its critical role in cancer progression, the evolution of immune escape is poorly understood. We integrate functional genomics and tumor evolution reconstruction and infer immune escape trajectories across cancer types. Our results have important implications for developing biomarkers for immunoprevention and treatment strategies for immune escape of cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761017 | PMC |
http://dx.doi.org/10.1101/2025.01.17.632799 | DOI Listing |
Nat Immunol
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
Although antibody escape is observed in emerging severe acute respiratory syndrome coronavirus 2 variants, T cell escape, especially after the global circulation of BA.2.86/JN.
View Article and Find Full Text PDFActa Biomater
January 2025
College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China. Electronic address:
mRNA-based protein replacement therapy has become one of the most widely applied forms of mRNA therapy, with lipid nanoparticles (LNPs) being extensively studied as efficient delivery platforms for mRNA. However, existing LNPs tend to accumulate in the liver or kidneys after intravenous injection, highlighting the need to develop vectors capable of targeting specific organs. In this study, we synthesized a small library of ionizable lipids and identified PPz-2R as a promising candidate, exhibiting lung-targeting capabilities, high mRNA transfection efficiency, and good stability through structure-activity relationship studies.
View Article and Find Full Text PDFJ Interferon Cytokine Res
January 2025
Gansu University of Traditional Chinese Medicine, Lanzhou, China.
Interferon-gamma (IFN-γ) is an important cytokine associated with antitumor immunity and has been implicated in the pathogenesis and progression of lung cancer. Nevertheless, no bibliometric analyses have been published in this field to date, and thus we aim to address this gap in knowledge. A search of the Web of Science (WOS) for literature related to the treatment of lung cancer with IFN-γ was conducted from 2002 to 2024.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
a major human fungal pathogen, can form biofilms on a variety of inert and biological surfaces. biofilms allow for immune evasion, are highly resistant to antifungal therapies, and represent a significant complication for a wide variety of immunocompromised patients in clinical settings. While transcriptional regulators and global transcriptional profiles of biofilm formation have been well-characterized, much less is known about translational regulation of this important virulence property.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!