Objective: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly impairs muscle regeneration following injuries, contributing to numerous complications and reduced quality of life. There is an urgent need for therapeutic strategies that can enhance muscle regeneration and alleviate these pathological mechanisms. In this study, we evaluate the therapeutic efficacy of W-GA nanodots, which are composed of gallic acid (GA) and tungstate (W6+), on muscle regeneration in type 2 diabetes mellitus (T2D)-induced muscle injury, with a focus on their anti-inflammatory and antioxidative effects.

Methods: This study synthesized ultrasmall W-GA nanodots that were optimized for improved stability and bioactivity under physiological conditions. In vitro assessments included cell viability, apoptosis, reactive oxygen species (ROS) generation, and myotube differentiation in C2C12 myoblasts under hyperglycemic conditions. In vivo, T2D was induced in C57BL/6 mice, followed by muscle injury and treatment with W-GA. Muscle repair, fibrosis, and functional recovery were assessed through histological analysis and gait analysis using the CatWalk system.

Results: The W-GA nanodots significantly enhanced muscle cell proliferation, decreased ROS, and reduced apoptosis in vitro. In vivo, compared with the control group, the W-GA-treated group exhibited notably improved muscle regeneration, decreased fibrosis, and enhanced functional recovery. The treatment notably modulated the inflammatory response and oxidative stress in diabetic muscle tissues, facilitating improved regenerative dynamics and muscle function.

Conclusions: W-GA nanodots effectively counter the pathological mechanisms of diabetic myopathy by enhancing regenerative capacity and reducing oxidative stress and inflammation. This nanomedicine approach offers a promising therapeutic avenue for improving muscle health and overall quality of life in individuals suffering from T2D. However, further studies are needed to explore the clinical applications and long-term efficacy of these nanodots in preventing diabetic complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757907PMC
http://dx.doi.org/10.1093/burnst/tkae059DOI Listing

Publication Analysis

Top Keywords

w-ga nanodots
20
muscle regeneration
16
muscle
12
type diabetes
12
diabetic muscle
8
muscle repair
8
diabetes mellitus
8
quality life
8
pathological mechanisms
8
muscle injury
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!