In cutaneous melanoma, epigenetic dysregulation is implicated in drug resistance and tumor immune escape. However, the epigenetic mechanisms that influence immune escape remain poorly understood. To elucidate how epigenetic dysregulation alters the expression of surface proteins that may be involved in drug targeting and immune escape, we performed a 3-dimensional surfaceome screen in primary melanoma cultures and identified the DNA-methyltransferase inhibitor decitabine as significantly upregulating the costimulatory molecule ICAM-1. By analyzing The Cancer Genome Atlas melanoma dataset, we further propose ICAM-1 upregulation on melanoma cells as a biomarker of a proinflammatory and antitumorigenic signature. Specifically, we showed that DNA-methyltransferase inhibitor administration upregulated the expression of the antigen-presenting machinery, HLA class I/II, as well as the secretion of the proinflammatory chemokines CXCL9 and CXCL10. Our in silico analysis on The Cancer Genome Atlas and ex vivo experiments on human primary melanoma samples revealed that increased ICAM-1 expression positively correlated with increased immunogenicity of human melanoma cells and correlated with increased immune cell infiltration. These findings suggest a therapeutic approach to modulate the immunogenic phenotype of melanoma cells, hence supporting the exploration of DNA-methyltransferase inhibitor as a potential inducer of infiltration in immunologically cold tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759630 | PMC |
http://dx.doi.org/10.1016/j.xjidi.2024.100319 | DOI Listing |
J Cell Mol Med
February 2025
Department of Chemotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China.
Tumour cells possess a multitude of chemoresistance mechanisms, which could plausibly contribute to the ineffectiveness of chemotherapy. O-methylguanine-DNA methyltransferase (MGMT) is an important effector protein associated with Temozolomide (TMZ) resistance in various tumours. To some extent, the expression level of MGMT determines the sensitivity of cells to TMZ, but the mechanism of its expression regulation has not been fully elucidated.
View Article and Find Full Text PDFImmunology
January 2025
Singapore Immunology Network (SIgN), A*STAR, Singapore, Singapore.
Cancer is one of the leading causes of death worldwide. In recent years, immune checkpoint inhibitor therapies, in addition to standard immuno- or chemotherapy and surgical approaches, have massively improved the outcome for cancer patients. However, these therapies have their limitations and improved strategies, including access to reliable cancer vaccines, are needed.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
Introduction: Hyperthermia is an established adjunct in multimodal cancer treatments, with mechanisms including cell death, immune modulation, and vascular changes. Traditional hyperthermia applications are resource-intensive and often associated with patient morbidity, limiting their clinical accessibility. Gold nanorods (GNRs) offer a precise, minimally invasive alternative by leveraging near-infrared (NIR) light to deliver targeted hyperthermia therapy (THT).
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Thyroid & Breast Surgery, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China.
Introduction: While most thyroid cancer patients have a favorable prognosis, anaplastic thyroid carcinoma (ATC) remains a particularly aggressive form with a median survival time of just five months. Conventional therapies offer limited benefits for this type of thyroid cancer. Our study aims to identify ATC patients who might bene t from immunotherapy.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France.
Dendritic cells (DC) are key players in antitumor immune responses. Tumors exploit their plasticity to escape immune control; their aberrant surface carbohydrate patterns (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!