Active fluids are driven out of thermodynamic equilibrium by internally generated forces, causing complex patterns of motion. Even when both the forces and motion are measurable, it is not yet possible to relate the two, because the sources of energy injection and dissipation are often unclear. Here, we study how energy is transferred by developing a method to measure viscosity from the shear stresses and strain rates within an epithelial cell monolayer. Surprisingly, there emerged multicellular regions in which the relationship between shear stress and shear strain rate was negatively proportional, indicating a negative viscosity. We provide direct experimental evidence that the negative viscosity results from cells aligning their stresses with the orientation of the flow. Regions of negative viscosity consistently exhibited greater cell speed and vorticity, and the cells had elevated metabolic activity, indicating that negative viscosity is a mechanism for injection of surplus energy. More broadly, our study shows that negative viscosity is a useful means of quantifying the flow of energy in active materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759849PMC

Publication Analysis

Top Keywords

negative viscosity
24
energy injection
8
epithelial cell
8
cell monolayer
8
indicating negative
8
viscosity
7
negative
6
energy
5
injection epithelial
4
monolayer negative
4

Similar Publications

Enhancing oil recovery in sandstone reservoirs, particularly through smart water flooding, is an appealing area of research that has been thoroughly documented. However, few studies have examined the formation of water-in-heavy oil emulsion because of the incompatibility between the injected water-folded ions, clay particles, and heavy fraction in the oil phase. In this study, we investigated the synergistic roles of asphaltene and clay in the smart water flooding process using a novel experimental approach.

View Article and Find Full Text PDF

Glutinous and japonica sorghum can be applied to different production processes by their amylopectin content and starch structure. However, the differences in the fine structure and physiochemistry properties of their starches, as well as their fermentation properties remain unclear. Compared with japonica sorghum, glutinous sorghum has a higher amylopectin content, short amylose chain content, relative crystallinity, and ∆H, but lower setback (SB), and starch granule size.

View Article and Find Full Text PDF

Active fluids are driven out of thermodynamic equilibrium by internally generated forces, causing complex patterns of motion. Even when both the forces and motion are measurable, it is not yet possible to relate the two, because the sources of energy injection and dissipation are often unclear. Here, we study how energy is transferred by developing a method to measure viscosity from the shear stresses and strain rates within an epithelial cell monolayer.

View Article and Find Full Text PDF

This study aimed to develop gastroretentive tablets based on mucoadhesive-floating systems with encapsulated gentian (, Gentianaceae) root extract to overcome the low bioavailability and short elimination half-life of gentiopicroside, a dominant bioactive compound with systemic effect. The formulation also aimed to promote the local action of the extract in the stomach. Tablets were obtained by direct compression of sodium bicarbonate (7.

View Article and Find Full Text PDF

Optimization Study of a High-Efficiency Preservative for Ammonia-Free Concentrated Natural Rubber Latex.

Polymers (Basel)

January 2025

Hainan Natural Rubber Technology Innovation Center, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.

Ammonia is commonly used as a preservative in the production of concentrated natural rubber latex (CNRL) and latex products; however, it poses a serious risk to human health and the environment. In this study, we investigated a thioacetamide derivative (TD) as a preservative of ammonia-free CNRL and the optimization of a stabilization system comprising potassium hydroxide (KOH), lauric acid (LA), and sodium dodecyl sulfate (SDS) to enhance its preservation effect. The results revealed that an optimal amount of TD (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!