Evolutionary sparse learning (ESL) uses a supervised machine learning approach, Least Absolute Shrinkage and Selection Operator (LASSO), to build models explaining the relationship between a hypothesis and the variation across genomic features (e.g., sites) in sequence alignments. ESL employs sparsity between and within the groups of genomic features (e.g., genomic loci) by using sparse-group LASSO. Although some software packages are available for performing sparse group LASSO, we found them less well-suited for processing and analyzing genome-scale data containing millions of features, such as bases. MyESL software fills the need for open-source software for conducting ESL analyses with facilities to pre-process the input hypotheses and large alignments, make LASSO flexible and computationally efficient, and post-process the output model to produce different metrics useful in functional or evolutionary genomics. MyESL can take phylogenetic trees and sequence alignments as input and transform them into numeric responses and features, respecetively. The model outputs are processed into user-friendly text and graphical files. The computational core of MyESL is written in C++, which offers model building with or without group sparsity, while the pre- and post-processing of inputs and model outputs is performed using customized functions written in Python. One of its applications in phylogenomics showcases the utility of MyESL. Our analysis of empirical genome-scale datasets shows that MyESL can build evolutionary models quickly and efficiently on a personal desktop, while other computational packages were unable due to their prohibitive requirements of computational resources and time. MyESL is available for Python environments on Linux and distributed as a standalone application for Windows and macOS. It is available from https://github.com/kumarlabgit/MyESL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760232 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!