Triazole, a nitrogen-containing five-membered heterocycle with two isomeric forms, 1,2,3-triazole and 1,2,4-triazole, has proven to be a valuable component in the pharmaceutical domain. Owing to its widespread utility in drug development, pharmaceutical and medicinal chemistry, several synthetic methods have been explored, such as different catalytic systems, solvents, and heating methodologies in recent years. However, some methods were associated with several limitations, such as harsh reaction conditions, high temperatures, low atom economy, and long reaction times. Conversely, the ongoing demand from the chemical industry has led to increased attention on overcoming these limitations and developing sustainable laboratory methods. In recent years, the microwave heating method in organic synthesis has evolved as a new, environmentally friendly approach with benefits such as atom economy, reduced use of hazardous chemicals, safer chemical design, few derivatives and enhanced energy efficiency. This review summarizes recent progress in microwave-assisted synthesis of triazoles (1,2,3-triazole and 1,2,4-triazole), with a comparative analysis between conventional methods and microwave-assisted methods in terms of reaction time, yield, green synthesis, sustainability and other relevant factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758809 | PMC |
http://dx.doi.org/10.1039/d4ra06886f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!