Introduction: Wound treatment is a significant health burden in any healthcare system, which requires proper management to minimize pain and prevent bacterial infections that can complicate the wound healing process.

Rationale: There is a need to develop innovative therapies to accelerate wound healing cost-effectively. Herein, two polymer-based nanofibrous systems were developed using poly-lactic-co-glycolic-acid (PLGA) and polyvinylpyrrolidone (PVP) loaded with a combination of an antibiotic (Fusidic acid, FA) and a local anesthetic (Lidocaine, LDC) via electrospinning technique for an expedited healing process by preventing bacterial infections while reducing the pain sensation.

Results: The fabricated nanofibers showed an excellent morphology with an average fiber diameter of 556 ± 71 nm and 291 ± 87 nm for the dual drug-loaded PLGA/PVP and PVP nanofibers, respectively. The encapsulation efficiency (EE%) and drug loading (DL) studies revealed that PLGA/PVP loaded with FA and LDC exhibited EE% of 92% and 75%, respectively, while the DL was measured at 40 ± 8 µg/mg for FA and 32 ± 7 µg/mg for LDC. Furthermore, both drugs were fully released from the nanofibers within 48 hours. In contrast, FA/LDC-loaded PVP nanofibers exhibited EE% of 100% for FA and 84% for LDC; DL was measured at 85 ± 3 µg/mg for FA and 70 ± 3 µg/mg for LDC, while both drugs were completely released within 24 hours. The in vitro cytotoxicity study demonstrated a safe concentration of FA and LDC at ≤ 125 μg/mL. The prepared nanofibers were tested in vivo in an -infected wound mice model to assess their efficacy, and the results showed that the FA/LDC-PVP had a faster wound closure and the lowest bacterial counts compared to other groups.

Conclusion: These findings showed the potential application of the fabricated dual drug-loaded nanofibers as a wound-healing plaster against infected acute wounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760276PMC
http://dx.doi.org/10.2147/IJN.S467469DOI Listing

Publication Analysis

Top Keywords

fusidic acid
8
bacterial infections
8
wound healing
8
dual drug-loaded
8
pvp nanofibers
8
exhibited ee%
8
ldc drugs
8
nanofibers
7
ldc
6
wound
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!