Incorporating zinc into biocompatible materials has been identified as a potential strategy for promoting bone regeneration and osteogenic activity during hard tissue regeneration. This work aimed to investigate the impact of zinc doping on the structure of akermanite, which was synthesized using the sol-gel combustion method, with the goal of improving the biological response. Powder XRD and FT-IR analysis confirmed the phase purity and the respective functional groups associated with Zn-doped akermanite. Further XPS analysis confirmed the presence of zinc with the respective binding energies in the akermanite matrix. According to the results obtained from the analysis, the apatite-forming ability of Zn-doped akermanite demonstrated enhanced apatite deposition on the surface of the pellet after 9 days of immersion in the SBF medium. The measured mechanical parameters, including compressive strength (140-189 MPa) and Young's modulus (2505-3599 MPa), fall within the range of human cortical bone. Antimicrobial results showed an improved inhibition rate of the doped ceramics compared to pure akermanite with an inhibition percentage of 87% even at lower concentrations. The hemocompatibility of the materials showed hemolysis of human blood cells within the acceptable range without exhibiting toxicity. Cytotoxicity results demonstrate the biocompatibility of the materials with the MG-63 cell line. Based on the results, akermanite doped with zinc at optimal concentrations was found to be compatible and nontoxic promoting it as a potential alternative for bone regeneration in orthopedic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755182PMC
http://dx.doi.org/10.1021/acsomega.4c05482DOI Listing

Publication Analysis

Top Keywords

bone regeneration
8
analysis confirmed
8
zn-doped akermanite
8
akermanite
7
zinc
5
zinc doped
4
doped akermanite
4
akermanite promising
4
promising biomaterial
4
biomaterial orthopedic
4

Similar Publications

Bioactive surface-functionalized MXenes for biomedicine.

Nanoscale

January 2025

Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.

MXenes, with their good biocompatibility, excellent photovoltaic properties, excellent physicochemical properties, and desirable bioactivity, have broad application prospects in the field of tissue regeneration. MXenes have been used in a wide range of applications including biosensing, bioimaging, tumour/infection therapy, bone regeneration and wound repair. By applying bioactive materials to modify the surface of MXenes, a series of multifunctional MXene-based nanomaterials can be designed for different biomedical applications to achieve better therapeutic effects or more desirable biological functions.

View Article and Find Full Text PDF

Background/purpose: Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs).

View Article and Find Full Text PDF

Background/purpose: Early osseointegration of titanium (Ti) dental implants relies on the surface topography. Surface modification of Ti seeks to enhance bone regeneration around implants. Acid etching is the simple, less technique sensitive and cost-effective technique for surface treatment.

View Article and Find Full Text PDF

Beta-adrenergic receptor antagonist propranolol prevents bisphosphonate-related osteonecrosis of the jaw by promoting osteogenesis.

J Dent Sci

January 2025

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Background/purpose: Bisphosphonate-related osteonecrosis of the jaw (BRONJ), a complication arising from the use of bisphosphonates (BPs), inflicts long-term suffering on patients. Currently, there is still a lack of effective treatments. This study aimed to explore the preventive effects of propranolol (PRO) on BRONJ in vitro and in vivo, given PRO's potential in bone health enhancement.

View Article and Find Full Text PDF

Background/purpose: Revascularization procedures are used over apexification to treat teeth with necrotic pulp tissues and incomplete root formation. Clinically, inducing proliferation, migration, matrix deposition, and differentiation of stem cells from apical papilla (SCAPs) are critical for pulp regeneration. The study aimed to elucidate the impact of bone morphogenetic protein-4 (BMP-4) on plasminogen activation molecules and the osteogenic/odontogenic differentiation of SCAPs, as well as understand the related signaling mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!