The distribution of high-viscosity microfilms in designated regions is crucial for the performance and durability of MEMS devices. This paper presents a novel method for controllable film formation in the milli/micron region by blade coating. A microfilm can be formed without viscosity limitation, and the formation process can be monitored only via a one-dimensional force sensor. The dynamics of the blade-coating process are analyzed in detail. The experimental results indicate that the initial height of the blade gap is the determining factor of film thickness, whereas the film length can be adjusted individually by the scratching speed without influence on film thickness. Moreover, the tangential force varies obviously in different coating parameters while exhibiting a similar trend.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755183 | PMC |
http://dx.doi.org/10.1021/acsomega.4c08900 | DOI Listing |
Analyst
January 2025
Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China.
Antibiotic residue detection plays an important role in protecting human health, but real-time, rapid, and highly sensitive detection is still challenging. Herein, gold and silver nanoparticles (Au-Ag NPs) were grown on the surface of optical fibers and a 50 nm thick gold film was deposited on the sensor's surface to fabricate the Au-Ag@Au fiber SPR sensor. The sensitivity of the sensor reached 3512 nm per RIU in the refractive index range of 1.
View Article and Find Full Text PDFPharm Nanotechnol
January 2025
Department of General Medicine, SRMC & RI, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai -600116, Tamil Nadu, India.
Aim: This study aimed to develop and evaluate lornoxicam (LXM) and thiocolchicoside (TCS) transferosomal transdermal patches.
Background: Oral administration of LXM and TCS can lead to gastric irritation, necessitating alternative delivery methods for pain and inflammation relief. Incorporating LXM & TCS into transferosomes within a transdermal patch offers a potential solution.
ACS Appl Mater Interfaces
January 2025
Division of Micro and Nanosystems (MST), School of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, Stockholm SE-10044, Sweden.
Controlled breakdown has emerged as an effective method for fabricating solid-state nanopores in thin suspended dielectric membranes for various biomolecular sensing applications. On an unpatterned membrane, the site of nanopore formation by controlled breakdown is random. Nanopore formation on a specific site on the membrane has previously been realized using local thinning of the membrane by lithographic processes or laser-assisted photothermal etching under immersion in an aqueous salt solution.
View Article and Find Full Text PDFDalton Trans
January 2025
Johnson Matthew Technology Centre, Blounts Court Rd., Sonning Common, RG4 9NH, UK.
A volatile heteroleptic open ruthenocene has been synthesised and characterised by NMR and single crystal X-ray diffraction. Using this compound as a precursor and oxygen as a co-reactant, a highly conductive Ru film has been deposited on Si with native oxide at 220 °C. Under the same deposition conditions, the film thickness obtained with the new compound has almost doubled compared to its homoleptic analogue.
View Article and Find Full Text PDFJ Food Sci Technol
February 2025
Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150 Thailand.
This study aimed to fabricate edible films from tapioca (T) and potato (P) starch, assessing their physicochemical properties and biodegradation across different ratios (T100P0, T70P30, T50P50, and T30P70). The films underwent evaluation for moisture content, thickness, water vapor permeability, and color values. T100P0 and T30P70 formulations exhibited the highest film transparency at 43.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!