elevated concentrations of soil-bound heavy metals and magnetic particles in a typical urban plateau lake wetland, China.

Heliyon

Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China.

Published: January 2025

Vegetation change significantly altered the hydrological processes and soil erosion within riparian ecosystems. It is unclear how change in managed vegetation types affect the geochemical behavior of heavy metals (HMs) and magnetic particles in karst riparian areas. Two soil depths of 0-20 cm and 20-40 cm were taken in alien species (), native species and in a typical urban plateau Lake wetland, Caohai lake, China. Low-frequency mass magnetic susceptibility (χ), anhysteretic remanent susceptibility (χ), isothermal remanent magnetization, Cd, Cr, Cu, Sb, Ni and Zn were determined. Compared with and habitat had the higher values of HMs, χ, χ, and isothermal remanent magnetization in top-soils. Frequency-dependent magnetic susceptibility ranged from 4.84 % to 10.87 % in top-soils and 6.82 %-9.95 % in sub-soils, lithogenic/pedogenic factors mainly masked the contribution of anthropogenic factors to magnetic signal enhancement. The correlation between variations of Cu and Sb with χ and isothermal remanent magnetization was found to be significant in top-soils, but not in sub-soils. tended to promote the enrichment of HMs and enhancement of magnetic signal, the impact of expansion on the distribution of soil HMs and magnetic particles in Caohai riparian wetland should be not disregarded.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758123PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e41528DOI Listing

Publication Analysis

Top Keywords

magnetic particles
12
isothermal remanent
12
remanent magnetization
12
heavy metals
8
typical urban
8
urban plateau
8
plateau lake
8
lake wetland
8
hms magnetic
8
magnetic susceptibility
8

Similar Publications

Influence of matrix stiffness on microstructure evolution and magnetization of magneto-active elastomers.

Soft Matter

January 2025

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, Dresden, 01069, Germany.

Field-induced microstructure evolution can play an important role in defining the coupled magneto-mechanical response of Magneto-Active Elastomers (MAEs). The behavior of these materials is classically modeled using mechanical, magnetic and coupled magneto-mechanical contributions to their free energy function. If the MAE sample is fully clamped so it cannot deform, the mechanical coupling is reduced to the internal microscopic deformations caused by the particles moving and deforming the elastic medium that surrounds them.

View Article and Find Full Text PDF

Piezo-Capacitive Flexible Pressure Sensor with Magnetically Self-Assembled Microneedle Array.

ACS Sens

January 2025

CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.

Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors.

View Article and Find Full Text PDF

This work is devoted to the study of the static magnetization of immobilized multi-core particles (MCPs) and their ensembles. These objects model aggregates of superparamagnetic nanoparticles that are taken up by biological cells and subsequently used, for example, as magnetoactive agents for cell imaging. In this study, we derive an analytical formula that allows us to predict the static magnetization of MCPs consisting of immobilized granules, in which the magnetic moment rotates freely the Néel mechanism.

View Article and Find Full Text PDF

Timely and accurate detection of trace mycotoxins in agricultural products and food is significant for ensuring food safety and public health. Herein, a deep learning-assisted and entropy-driven catalysis (EDC)-Argonaute powered fluorescence single-particle aptasensing platform was developed for ultrasensitive detection of fumonisin B (FB) using single-stranded DNA modified with biotin and red fluorescence-encoded microspheres as a signal probe and streptavidin-conjugated magnetic beads as separation carriers. The binding of aptamer with FB releases the trigger sequence to mediate EDC cycle to produce numerous 5'-phosphorylated output sequences, which can be used as the guide DNA to activate downstream Argonaute (Ago) for cleaving the signal probe, resulting in increased number of fluorescence microspheres remaining in the final reaction supernatant after magnetic separation.

View Article and Find Full Text PDF

elevated concentrations of soil-bound heavy metals and magnetic particles in a typical urban plateau lake wetland, China.

Heliyon

January 2025

Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China.

Vegetation change significantly altered the hydrological processes and soil erosion within riparian ecosystems. It is unclear how change in managed vegetation types affect the geochemical behavior of heavy metals (HMs) and magnetic particles in karst riparian areas. Two soil depths of 0-20 cm and 20-40 cm were taken in alien species (), native species and in a typical urban plateau Lake wetland, Caohai lake, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!