This work studies the influence of flue gas composition, its moisture and ash content, on the efficiency of a CO adsorption/desorption process to capture the CO from flue gases along with its subsequent reuse in greenhouse CO enrichment (Patent ES2514090). The influence of the inlet flow rate, moisture, and ash content were analysed. The experimental conditions were based on those that are achievable under real operating conditions, namely an inlet flow rate from 1.2 to 4.8 L per minute, humidity from 3 % to 65 %, and an ash concentration from 0 % to 1 %. The results show that the inlet flow had no effect on the adsorption capacity but that there was a reduction in the adsorption capacity at the higher humidity and ash content levels studied, of 10.5 % and 21 %, respectively. The data were used to develop models based on the Langmuir and Freundlich isotherm that fitted the experimental data with a reliability of 100 % and 80.1 %, respectively. This model was used to optimize the combustion gas variables and thus their influence on the final CO adsorption/desorption capacity. The techno-economic analysis performed confirmed a total cost reduction of 12 % when using the optimal combustion gas conditions (a relative humidity of 3 % and an ash concentration of 0 %) versus the worst gas conditions (a relative humidity of 65 % and an ash concentration of 1 %), which resulted in a saving of 60 % by avoiding the use of liquified CO. These results confirm the technical and economic viability of the proposed technology and its potential contribution to improving the environmental and economic sustainability of agricultural food production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760289PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e40346DOI Listing

Publication Analysis

Top Keywords

ash content
16
moisture ash
12
inlet flow
12
humidity ash
12
ash concentration
12
flue gases
8
flow rate
8
adsorption capacity
8
combustion gas
8
gas conditions
8

Similar Publications

In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.

View Article and Find Full Text PDF

This study introduces a novel landfill cover material, employing lake sediment as a substrate, stabilised with fly ash, slag, desulfurisation gypsum and construction waste. The mechanical properties, including shear strength parameters, unconfined compressive strength, hydraulic conductivity, volumetric shrinkage, and water content, of the solidified sludge were evaluated. The microscopic mechanism of the solidified sludge were investigated through XRD, FTIR, and SEM-EDS techniques.

View Article and Find Full Text PDF

Development of nutri-functional paneer whey-based kefir drink.

J Food Sci Technol

February 2025

Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125001 Haryana India.

Present research focused on biotransformation of paneer whey into a functional fermented product using kefir culture. Out of 9 formulations (S-1 to S-9) tried; S-8, obtained by fermenting FOS (1%) supplemented paneer whey and adding 8% refined sugar, was identified as the most acceptable product. Nutritional analysis revealed the following as per 100 g of product: 44.

View Article and Find Full Text PDF

This work studies the influence of flue gas composition, its moisture and ash content, on the efficiency of a CO adsorption/desorption process to capture the CO from flue gases along with its subsequent reuse in greenhouse CO enrichment (Patent ES2514090). The influence of the inlet flow rate, moisture, and ash content were analysed. The experimental conditions were based on those that are achievable under real operating conditions, namely an inlet flow rate from 1.

View Article and Find Full Text PDF

The purpose of this study is to solve the problem of ammonia (NH) release when modified magnesium slag (MMS) is used as coal mine backfill cementitious material, and to explore its chemical mechanism and put forward effective solutions. Uniaxial compressive strengths (UCS) hydration kinetics, scanning electron microscope (SEM), and thermogravimetric analysis-derivative thermogravimetry (TG-DTG), X-ray diffractometer (XRD) and other testing methods were used to study the evolution of the properties of MMS-based backfill material, which provided a scientific basis for the safe utilization of MMS. First, the chemical mechanism underlying the release of NH from MMS was identified, and it was confirmed that MgN and LiN are the main nitrogen sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!