Background: Colon cancer is the third most common cancer type worldwide. Novel alternative therapeutic anti-cancer drugs against colon cancer with less toxicity are to be explored . This study was aimed to explore the anti-proliferative and anti-migratory activity of various fractions of ethanolic leaf extract on human colon cancer cell lines (HCT-116) and to explore the potential molecular targets from the most potent plant extract fraction.
Methods: After obtaining ethical clearance from the institutional ethics committee, the extract and fractions were prepared and a preliminary analysis of the phytochemical was done qualitatively. Total phenolic and flavonoids were determined. Ethanolic leaf extract and its fractions were subjected to cytotoxicity analysis using the sulforhodamine B assay and the most promising fraction which showed the highest viability was selected to study anti-migratory activity. The anti-migratory effect was studied using a scratch wound healing assay. Gas chromatography-mass spectrometry (GC-MS) was done to identify the major phytocompounds present in the fraction. The major five phytocompounds identified from the GC-MS were subjected to bioinformatics analysis.
Result: Among the four fractions, the petroleum ether fraction exhibited the highest anti-proliferative activity. The migration of colon cancer cells was significantly inhibited by the extract and petroleum ether fraction. The major phytocompounds identified from GC-MS were phytol (13.03%), 2,6-bis (3,4-methylenedioxyphenyl)-3,7-dioxabicyclo (3.3.0) octane (11.95%), gamma.-sitosterol (10.45%), alpha.-tocopherol-beta.-D-mannoside (7.50%) and 3-amino-4-piperonyl-5-pyrazolone (5.84%). The bioinformatics analysis of these phytochemicals showed a high potential to affect the levels of key proteins driving colon cancer progression, inhibiting the enzymes and proteins overexpressed in cancer.
Conclusion: The outcome of this study endorses the potential of phytochemicals of the petroleum ether fraction of ethanolic leaf extract of for the development of a new chemotherapeutic agent in the treatment of colon cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759889 | PMC |
http://dx.doi.org/10.12688/f1000research.141542.2 | DOI Listing |
Asian Pac J Cancer Prev
January 2025
Department of Physics, Faculty of Sciences, Arak University, Arak, Iran.
Objective: Addressing the rising cancer rates through timely diagnosis and treatment is crucial. Additionally, cancer survivors need to understand the potential risk of developing secondary cancer (SC), which can be influenced by several factors including treatment modalities, lifestyle choices, and habits such as smoking and alcohol consumption. This study aims to establish a novel relationship using linear regression models between dose and the risk of SC, comparing different prediction methods for lung, colon, and breast cancer.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Department of Nuclear Medicine, Busan Paik Hospital, University of Inje College of Medicine, Busan, Republic of Korea.
Objective: This study aimed to develop a simple machine-learning model incorporating lymph node metastasis status with F-18 Fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and clinical information for predicting regional lymph node metastasis in patients with colon cancer.
Methods: This retrospective study included 193 patients diagnosed with colon cancer between January 2014 and December 2017. All patients underwent F-18 FDG PET/CT and blood test before surgery.
Ann Surg Oncol
January 2025
Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China.
Turk J Gastroenterol
January 2025
Department of Anorectal, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China.
United European Gastroenterol J
January 2025
Department of Gastroenterology, CHU Liège, Liège, Belgium.
Background And Aims: Probe-based confocal endomicroscopy (pCLE) allows real-time microscopic visualization of the intestinal mucosa surface layers. Despite remission achieved through anti-tumor necrosis factor or vedolizumab therapy, anomalies in the intestinal epithelial barrier are observed in inflammatory bowel disease (IBD) patients. Our study aimed to assess these abnormalities in non-IBD individuals and compare them with IBD patients in endoscopic remission to identify the associated factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!