Deciphering cell states and the cellular ecosystem to improve risk stratification in acute myeloid leukemia.

Brief Bioinform

State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang'an South Road, Xiamen, Fujian 361102, China.

Published: November 2024

Acute myeloid leukemia (AML) demonstrates significant cellular heterogeneity in both leukemic and immune cells, providing valuable insights into clinical outcomes. Here, we constructed an AML single-cell transcriptome atlas and proposed sciNMF workflow to systematically dissect underlying cellular heterogeneity. Notably, sciNMF identified 26 leukemic and immune cell states that linked to clinical variables, mutations, and prognosis. By examining the co-existence patterns among these cell states, we highlighted a unique AML cellular ecosystem (ACE) that signifies aberrant tumor milieu and poor survival, which is confirmed by public RNA-seq cohorts. We further developed the ACE signature (ACEsig), comprising 12 genes, which accurately predicts AML prognosis, and outperforms existing signatures. When applied to cytogenetically normal AML or intensively treated patients, the ACEsig continues to demonstrate strong performance. Our results demonstrate that large-scale systematic characterization of cellular heterogeneity has the potential to enhance our understanding of AML heterogeneity and contribute to more precise risk stratification strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbaf028DOI Listing

Publication Analysis

Top Keywords

cell states
12
cellular heterogeneity
12
cellular ecosystem
8
risk stratification
8
acute myeloid
8
myeloid leukemia
8
leukemic immune
8
aml
6
cellular
5
deciphering cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!