Objective: The prognosis for severe asthma is poor, and the current treatment options are limited. The methyl-CpG binding domain protein 2 (MBD2) participates in neutrophil-mediated severe asthma through epigenetic regulation. Neutrophil extracellular traps (NETs) play a critical role in the pathogenesis of severe asthma. This study aims to detect if MBD2 can reduce NETs formation and the potential mechanism in severe asthma.

Methods: A severe asthma model was established in C57BL/6 wild-type mice exposure to house dust mite (HDM), ovalbumin (OVA), and lipopolysaccharide (LPS). Enzyme-linked immunosorbent assay was used to measure the concentrations of IL-4, IL-17A, and IFN-γ in lung tissues. Flow cytometry was employed to determine the percentages of Th2, Th17, and Treg cells in lung tissues. Quantitative real-time polymerase chain reaction was utilized to assess the mRNA expression levels of MBD2, JAK2, and PAD4. Western blotting and immunofluorescence were conducted to detect the protein of MBD2, JAK2, PAD4, and CitH3. HL-60 cells were differentiated into neutrophil-like cells by culturing in a medium containing dimethyl sulfoxide and then stimulated with LPS. KCC-07, Ruxolitinib, and Cl-amidine were used to inhibit the expressions of MBD2, JAK2, and PAD4, respectively.

Results: Severe asthma mice were characterized by pulmonary neutrophilic inflammation and increased formation of neutrophil extracellular traps (NETs). The expression of MBD2, JAK2, and PAD4 was elevated in severe asthma mice. Inhibiting the expression of MBD2, JAK2, and PAD4 reduced NETs formation and decreased airway inflammation scores, total cell counts and neutrophil counts in BALF, and percentage of Th2 and Th17 cell in lung tissues, whereas increasing Treg cell counts. In both severe asthma mice and HL-60-differentiated neutrophil-like cells , inhibiting MBD2 reduced the mRNA and protein expression of JAK2 and PAD4, and inhibiting JAK2 reduced the expression of PAD4 mRNA and protein.

Conclusion: MBD2 regulates PAD4 expression through the JAK2 signaling pathway to promote NETs formation in mice with severe asthma. Further bench-based and bedside-based studies targeting the MBD2, PAD4, and JAK2 signaling pathways will help open new avenues for drug development of severe asthma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07853890.2025.2458207DOI Listing

Publication Analysis

Top Keywords

severe asthma
40
jak2 pad4
24
mbd2 jak2
20
neutrophil extracellular
12
nets formation
12
lung tissues
12
asthma mice
12
severe
11
asthma
10
mbd2
10

Similar Publications

Introduction: Severe asthma is a chronic airway disease characterized by many pathomechanisms known as endotypes. Biological therapies targeting severe asthma endotypes have significantly improved the treatment of this disease, thus remarkably bettering patient quality of life.

Areas Covered: This review aims to describe current biological therapies for severe asthma, highlighting emerging ones.

View Article and Find Full Text PDF

Background: This study aimed to investigate the possible association of LPCAT1-rs8352 genetic variant (single nucleotide change C to G) with the onset and severity of pediatric asthma. Additionally, the study examined the influence of LPCAT1-rs8352 genotypes on asthma-related biomarkers including blood eosinophils count (BEC), eosinophil cationic protein (ECP), high-sensitivity C-reactive protein (hs-CRP), and immunoglobulin E (IgE) and on lung function [forced expiratory volume in one second (FEV1) and the forced vital capacity (FVC)].

Patients And Methods: The study included ninety-six participant grouped into two groups: G1 (46 asthmatics) and G2 (50 healthy controls).

View Article and Find Full Text PDF

SLAMF8 Disrupts Epithelial Barrier in Chronic Rhinosinusitis with Nasal Polyps via M1 Macrophage Polarization.

Ann Allergy Asthma Immunol

January 2025

Department of Otorhinolaryngology Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China. Electronic address:

Background: Recent studies show that M1 macrophages accumulate predominantly in non-eosinophilic chronic rhinosinusitis with nasal polyps (neCRSwNP). However, the precise mechanisms regulating M1 macrophages and their impact on the epithelial barrier remain unclear.

Objective: We aim to investigate the expression and regulatory role of SLAMF8, a molecule exclusively expressed in myeloid cells, in M1 macrophage polarization and its potential contribution to neCRSwNP development.

View Article and Find Full Text PDF

Background: Respiratory syncytial virus (RSV) is an important cause of lower respiratory tract infection, hospitalisation and death in adults.

Methods: Based on evidence regarding the impact of RSV on adult populations at risk for severe infection and the efficacy and safety of RSV vaccines, the Portuguese Society of Pulmonology, the Portuguese Association of General and Family Medicine, the Portuguese Society of Cardiology, the Portuguese Society of Infectious Diseases and Clinical Microbiology, the Portuguese Society of Endocrinology, Diabetes and Metabolism, and the Portuguese Society of Internal Medicine endorses this position paper with recommendations to prevent RSV-associated disease and its complications in adults through vaccination.

Conclusion: The RSV vaccine is recommended for people aged ≥50 years with risk factors (chronic obstructive pulmonary disease, asthma, heart failure, coronary artery disease, diabetes, chronic kidney disease, chronic liver disease, immunocompromise, frailty, dementia, and residence in a nursing home) and all persons aged ≥60 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!