Unlocking the Therapeutic Potential of Natural Products for Alzheimer's Disease.

J Med Chem

Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China.

Published: January 2025

Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by memory loss and cognitive decline. With current treatments offering limited effectiveness, researchers are turning to natural products that can target various aspects of AD pathology. Clinically approved natural products, such as galantamine and huperzine A, have shown success in AD treatments. Furthermore, compounds such as epigallocatechin gallate, quercetin, and resveratrol are in clinical trials. This Perspective examines nearly 100 natural compounds with promising neuroprotective effects in preclinical and clinical studies. These compounds exhibit diverse pharmacological actions that help to prevent neurodegeneration while improving cognitive functions. Their unique structures further enhance their biological activities, making them promising candidates for drug discovery. This Perspective stresses the importance of further clinical research to maximize the medical benefits of these compounds and highlights their potential as innovative remedies for AD. Continued exploration of these compounds is crucial to fully leverage their capabilities in combating AD.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.4c03049DOI Listing

Publication Analysis

Top Keywords

natural products
12
alzheimer's disease
8
compounds
5
unlocking therapeutic
4
therapeutic potential
4
natural
4
potential natural
4
products alzheimer's
4
disease alzheimer's
4
disease progressive
4

Similar Publications

Multiple parameters define the treatment course with biologics for a psoriatic patient while treatment switches are often associated with worse prognosis. The purpose of this study was to describe the switching patterns of biologics for psoriasis in the Greek market landscape and to detect associated factors that may impact the evolvement of selected therapy. This is a retrospective cohort study using data recorded in the nationwide digital prescription database of Greece.

View Article and Find Full Text PDF

Development of a Highly Nutritious Vegetable Beverage Based on Kurugua (Sicana odorifera) and Chia Oil (Salvia hispanica).

Plant Foods Hum Nutr

January 2025

Facultad de Ciencias Químicas, Dirección de Investigaciones, Universidad Nacional de Asunción, P.O. 1055, San Lorenzo, Paraguay.

Concerns over malnutrition, synthetic additives and post-harvest waste highlight the need for innovation in food technology, turning towards underutilized crops. Plant-based beverages offer sustainable dietary alternatives and the increasing demand for such products makes the exploration of native crops particularly relevant. This study focuses on the development of a beverage derived from the native South American fruit kurugua (Sicana odorifera), combined with chia oil (Salvia hispanica L.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by dry skin, severe itching, redness, and inflammation. Its complex etiology, involving genetic, immunological, and environmental factors, necessitates innovative therapeutic approaches. This study investigates nanostructured lipid carriers (NLCs) formulated with traditional fermented coconut (Cocos nucifera L.

View Article and Find Full Text PDF

Terminal metal-phosphorus (M-P) complexes are of significant contemporary interest as potential platforms for P-atom transfer (PAT) chemistry. Decarbonylation of metal-phosphaethynolate (M-PCO) complexes has emerged as a general synthetic approach to terminal M-P complexes. M-P complexes that are stabilized by strong M-P multiple bonds are kinetically persistent and isolable.

View Article and Find Full Text PDF

Simple and sustainable three- and four-step sequences of di-OH-protection/mono-OMe-deprotection/OrgRC and di-OH-protection/mono-OMe-deprotection/OrgRC/OMe-deprotection protocols were developed to construct biologically active natural products of irisoquin, irisoquin A, irisoquin D, irisoquin F, sorgoleone-364, embelin, rapanone, 5--methylembelin, 5--methylrapanone and their analogues from the commercially available 2,5-dihydroxy-1,4-benzoquinone, aliphatic aldehydes and Hantzsch ester (1,4-DHP) in very good to excellent yields by using organocatalytic reductive coupling (OrgRC) as key reaction. Many of these natural compounds exhibited a broad spectrum of biological activities including antioxidant, anti-inflammatory, anticonvulsant, anxiolytic, analgesic, anthelmintic, antitumor, antibacterial, and antifertility properties. At the same time, simple and readily available 2,5-dihydroxy-1,4-benzoquinone was transformed into a functionally rich library of 2,5-dihydroxy-3,6-dialkyl-1,4-benzoquinones in very good yields by using sequential OrgRC followed by deprotection reactions and resulting natural/unnatural products would be excellent targets for investigation to show their biological activities compared to known natural products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!