The architectural characteristics of metal-organic frameworks (MOFs) can be examined through their net topology, which consists of nodes and linkers. A node's connectivity and site symmetry are likely the key elements influencing the net topology of MOFs. Metal-organic polyhedra (MOPs) function effectively as nodes when used as supermolecular building blocks (SBBs). The SBB approach offers a powerful strategy for the deliberate design of macroscale materials, ranging from soft materials such as gels, polymers, and membranes to crystalline frameworks. However, achieving highly ordered structures with robust and air-stable rhodium-based MOPs (RhMOPs) presents a significant challenge. To investigate how to control the precise spatial distribution of RhMOPs as SBBs for constructing crystalline extended networks, here, we present a strategy for synthesizing MOFs by coordinating RhMOPs with rigid bridging linkers 1,4-diazabicyclo[2.2.2]octane (dabco). The resulting crystalline framework exhibited high microporosity and four times higher adsorption capacity than the parent MOP solids.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202401456DOI Listing

Publication Analysis

Top Keywords

net topology
8
frameworks construction
4
construction rhodium-organic
4
rhodium-organic cuboctahedra
4
cuboctahedra rigid
4
rigid linker
4
linker incorporation
4
incorporation architectural
4
architectural characteristics
4
characteristics metal-organic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!