Changes in the microstructure of the aortic wall precede the progression of various aortic pathologies, including aneurysms and dissection. Current clinical decisions with regards to surgical planning and/or radiological intervention are guided by geometric features, such as aortic diameter, since clinical imaging lacks tissue microstructural information. The aim of this proof-of-concept work is to investigate a non-invasive imaging method, diffusion tensor imaging (DTI), in ex vivo aortic tissue to gain insights into the microstructure. This study examines healthy, aneurysm and a type B chronic dissection aortae, via DTI. DTI-derived metrics, such as the fractional anisotropy, mean diffusivity, helical angle and tractography, were examined in each morphology. The results from this work highlighted distinct differences in fractional anisotropy (healthy, 0.24 ± 0.008; aneurysmal, 0.19 ± 0.002; dissected, 0.13 ± 0.006) and a larger variation in the helical angle in the dissected aorta compared to healthy (39.28 ± 11.93° vs. 26.12 ± 4.60°, respectively). These differences were validated by histological characterisation. This study demonstrates the sensitivity of DTI to pathological changes in aortic tissue, highlighting the potential of this methodology to provide improved clinical insight.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/joa.14223 | DOI Listing |
Unlabelled: Accurate localization of white matter pathways using diffusion MRI is critical to investigating brain connectivity, but the accuracy of current methods is not thoroughly understood. A fruitful approach to validating accuracy is to consider microscopy data that have been co-registered with MRI of post mortem samples. In this setting, structure tensor analysis is a standard approach to computing local orientations for validation.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
January 2025
Aarhus University Hospital, Danish Centre for Particle Therapy, Palle Juul-Jensens Blvd. 25, 8200 Aarhus, Denmark.
Background And Purpose: Diffusion tensor imaging (DTI) has been proposed to guide the anisotropic expansion from gross tumor volume to clinical target volume (CTV), aiming to integrate known tumor spread patterns into the CTV. This study investigate the potential of using a DTI atlas as an alternative to patient-specific DTI for generating anisotropic CTVs.
Materials And Methods: The dataset consisted of twenty-eight newly diagnosed glioblastoma patients from a Danish national DTI protocol with post-operative T1-contrast and DTI imaging.
J Anat
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Changes in the microstructure of the aortic wall precede the progression of various aortic pathologies, including aneurysms and dissection. Current clinical decisions with regards to surgical planning and/or radiological intervention are guided by geometric features, such as aortic diameter, since clinical imaging lacks tissue microstructural information. The aim of this proof-of-concept work is to investigate a non-invasive imaging method, diffusion tensor imaging (DTI), in ex vivo aortic tissue to gain insights into the microstructure.
View Article and Find Full Text PDFMed Phys
January 2025
Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, Canada.
Background: The treatment of glioblastomas (GBM) with radiation therapy is extremely challenging due to their invasive nature and high recurrence rate within normal brain tissue.
Purpose: In this work, we present a new metric called the tumour spread (TS) map, which utilizes diffusion tensor imaging (DTI) to predict the probable direction of tumour cells spread along fiber tracts. We hypothesized that the TS map could serve as a predictive tool for identifying patterns of likely recurrence in patients with GBM and, therefore, be used to modify the delivery of radiation treatment to pre-emptively target regions at high risk of tumour spread.
Neuroimage Clin
January 2025
Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, United States. Electronic address:
Purpose: This study aims to assess whether water exchange rate (k), a surrogate for blood-brain barrier (BBB) permeability, is associated with functional outcomes in patients with acute ischemic stroke (AIS).
Methods: We studied 22 AIS patients enrolled from 1/2022 to 4/2024 who underwent multi-modal non-contrast imaging on a 3.0-Tesla scanner, including DP-pCASL, DTI, NODDI and MAP imaging.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!