External validation of a multivariable prediction model for positive resection margins in breast-conserving surgery.

BMC Res Notes

Department of Surgery, Department of Clinical Sciences, Division of Surgery, Skåne University Hospital, Lund University, Lund, Sweden.

Published: January 2025

Objectives: Positive resection margins after breast-conserving surgery (BCS) most often demands a repeat surgery. To preoperatively identify patients at risk of positive margins, a multivariable model has been developed that predicts positive margins after BCS with a high accuracy. This study aimed to externally validate this prediction model to explore its generalizability and assess if additional preoperatively available variables can further improve its predictive accuracy. The validation cohort included 225 patients with invasive breast cancer who underwent BCS at Aarhus University Hospital, Aarhus, Denmark during 2020-2022. Receiver operating characteristic (ROC) and calibration analysis were used to validate the prediction model. Univariable logistic regression was used to evaluate if additional variables available in the validation cohort were associated with positive margins and backward elimination to explore if these variables could further improve the model´s predictive accuracy.

Results: The AUC of the model was 0.60 (95% CI: 0.50-0.70) indicating a lower discriminative capacity in the external cohort. We found weak evidence for an association between increased preoperative breast density on mammography and positive resection margins after BCS (p = 0.027), but the AUC of the model did not improve, when mammographic breast density was included as an additional variable in the model.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13104-025-07103-8DOI Listing

Publication Analysis

Top Keywords

prediction model
12
positive resection
12
resection margins
12
positive margins
12
margins breast-conserving
8
breast-conserving surgery
8
margins bcs
8
validate prediction
8
variables improve
8
validation cohort
8

Similar Publications

Objective: Gallstones have gradually become a highly prevalent digestive disease worldwide. This study aimed to investigate the association of nine different obesity-related indicators (BRI, RFM, BMI, WC, LAP, CMI, VAI, AIP, TyG) with gallstones and to compare their predictive properties for screening gallstones.

Methods: Data for this study were obtained from the National Health and Nutrition Examination Survey (NHANES) for the 2017-2020 cycle, and weighted logistic regression analyses with multi-model adjustment were conducted to explore the association of the nine indicators with gallstones.

View Article and Find Full Text PDF

Background: The impact of aortic arch (AA) morphology on the management of the procedural details and the clinical outcomes of the transfemoral artery (TF)-transcatheter aortic valve replacement (TAVR) has not been evaluated. The goal of this study was to evaluate the AA morphology of patients who had TF-TAVR using an artificial intelligence algorithm and then to evaluate its predictive value for clinical outcomes.

Materials And Methods: A total of 1480 consecutive patients undergoing TF-TAVR using a new-generation transcatheter heart valve at 12 institutes were included in this retrospective study.

View Article and Find Full Text PDF

Background: Detecting kidney trauma on CT scans can be challenging and is sometimes overlooked. While deep learning (DL) has shown promise in medical imaging, its application to kidney injuries remains underexplored. This study aims to develop and validate a DL algorithm for detecting kidney trauma, using institutional trauma data and the Radiological Society of North America (RSNA) dataset for external validation.

View Article and Find Full Text PDF

Background: Type A aortic dissection (TAAD) remains a significant challenge in cardiac surgery, presenting high risks of adverse outcomes such as permanent neurological dysfunction and mortality despite advances in medical technology and surgical techniques. This study investigates the use of quantitative electroencephalography (QEEG) to monitor and predict neurological outcomes during the perioperative period in TAAD patients.

Methods: This prospective observational study was conducted at the hospital, involving patients undergoing TAAD surgery from February 2022 to January 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!