Local hemodynamics play an essential role in the initiation and progression of coronary artery disease. While vascular geometry alters local hemodynamics, the relationship between vascular structure and hemodynamics is poorly understood. Previous computational fluid dynamics (CFD) studies have explored how anatomy influences plaque-promoting hemodynamics. For example, areas exposed to low wall shear stress (ALWSS) can indicate regions of plaque growth. However, small sample sizes, idealized geometries, and simplified boundary conditions have limited their scope. We generated 230 synthetic models of left coronary arteries and simulated coronary hemodynamics with physiologically realistic boundary conditions. We measured the sensitivity of hemodynamic metrics to changes in bifurcation angles, positions, diameter ratios, tortuosity, and plaque topology. Our results suggest that the diameter ratio between left coronary branches plays a substantial role in generating adverse hemodynamic phenotypes and can amplify the effect of other geometric features such as bifurcation position and angle, and vessel tortuosity. Introducing mild plaque in the models did not change correlations between structure and hemodynamics. However, certain vascular structures can induce ALWSS at the trailing edge of the plaque. Our analysis demonstrates that coronary artery vascular structure can provide key insight into the hemodynamic environments conducive to plaque formation and growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-85781-x | DOI Listing |
Acta Neurochir (Wien)
January 2025
Division of Pediatric Neurosurgery, Department of Neurosurgery, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
Up to 40% of intracranial aneurysms arise from the anterior cerebral artery and anterior communicating artery (ACA-ACoA) complex. The vast variability of vessel anomalies and the surrounding critical structures correlate with severe morbidity and mortality rates in case of rupture. In the era of cutting-edge advantages of endovascular procedures, surgical expertise is reducing.
View Article and Find Full Text PDFHistochem Cell Biol
January 2025
Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
Gestational diabetes mellitus (GDM) significantly disrupts placental structure and function, leading to complications such as intrauterine growth restriction (IUGR) and preeclampsia. This study aimed to investigate the effects of GDM on placental histology, angiogenesis, and oxidative stress, as well as evaluate metformin's protective role in mitigating these changes. A total of 60 pregnant Sprague-Dawley rats were divided into four groups: control, metformin-treated, GDM, and GDM with metformin.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
January 2025
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
In modern war theaters, exposures to blast overpressures are one of the most common causes of brain injury. These pervasive events result in acute and chronic cerebrovascular degenerative processes. Using a rat model of blast-induced mild traumatic brain injury, we identified intramural periarterial hematomas as early primary acute lesions induced by blast exposures.
View Article and Find Full Text PDFCerebrovascular endothelial cell (EC) subtypes characterized by blood-brain barrier (BBB) properties or fenestrated pores are essential components of brain-blood interfaces, supporting brain function and homeostasis. To date, the origins and developmental mechanisms underlying this heterogeneous EC network remain largely unclear. Using single-cell-resolution lineage tracing in zebrafish, we discover a multipotent vascular niche at embryonic capillary borders that generates ECs with BBB or fenestrated molecular identity.
View Article and Find Full Text PDFiScience
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
The heart, with its complex structural and functional characteristics, plays a critical role in sustaining life by pumping blood throughout the entire body to supply nutrients and oxygen. Engineered heart tissues have been introduced to reproduce heart functions to understand the pathophysiological properties of the heart and to test and develop potential therapeutics. Although numerous studies have been conducted in various fields to increase the functionality of heart tissue to be similar to reality, there are still many difficulties in reproducing the blood-pumping function of the heart.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!