In recent decades, electrokinetic handling of microparticles and biological cells found many applications ranging from biomedical diagnostics to microscale assembly. The integration of electrokinetic handling such as dielectrophoresis (DEP) greatly benefits microfluidic point-of-care systems as many modern assays require cell handling. Compared to traditional pump-driven microfluidics, typically used for DEP applications, centrifugal CD microfluidics provides the ability to consolidate various liquid handling tasks in self-contained discs under the control of a single motor. Therefore, it has significant advantages in terms of cost and reliability. However, to integrate DEP on a spinning disc, a major obstacle is transferring power to the electrodes that generate DEP forces. Existing solutions for power transfer lack portability and availability or introduce excessive complexity for DEP settings. We present a concept that leverages the compatibility of DEP and inductive power transfer to bring DEP onto a rotating disc without much circuitry. Our solution leverages the ongoing advances in the printed circuit board market to make low-cost cartridges (<$1) that can employ DEP, which was validated using yeast cells. The resulting DEPDisc platform solves the challenge that existing printed circuit board electrodes are reliant on expensive high-voltage function generators by boosting the voltage using resonant inductive power transfer. This work includes a device costing less than $100 and easily replicable with the information provided in the Supplementary material. Consequently, with DEPDisc we present the first DEP-based low-cost platform for cell handling where both the device and the cartridges are truly inexpensive.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41378-024-00856-5DOI Listing

Publication Analysis

Top Keywords

printed circuit
8
electrokinetic handling
8
power transfer
8
dep
7
low-cost printed
4
circuit board-based
4
board-based centrifugal
4
centrifugal microfluidic
4
microfluidic platform
4
platform dielectrophoresis
4

Similar Publications

Background: Diabetic peripheral neuropathy (DPN) is a common complication of diabetes. Proactive treatment options remain limited, which is exacerbated by a lack of sensitive and convenient diagnostics, especially early in disease progression or specifically to assess small fiber neuropathy (SFN), the loss of distal small diameter axons that innervate tissues and organs.

Methods: We designed, fabricated, tested, and validated a first-of-its-kind medical diagnostic device for the functional assessment of transdermal small fiber nerve activity.

View Article and Find Full Text PDF

In recent decades, electrokinetic handling of microparticles and biological cells found many applications ranging from biomedical diagnostics to microscale assembly. The integration of electrokinetic handling such as dielectrophoresis (DEP) greatly benefits microfluidic point-of-care systems as many modern assays require cell handling. Compared to traditional pump-driven microfluidics, typically used for DEP applications, centrifugal CD microfluidics provides the ability to consolidate various liquid handling tasks in self-contained discs under the control of a single motor.

View Article and Find Full Text PDF

Recyclability and recovery of carbon from waste printed circuit boards within a circular economy perspective: A review.

J Environ Manage

January 2025

Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada. Electronic address:

Waste printed circuit boards (WPCBs) are a significant component of electronic waste (e-waste) and are among the fastest-generating waste flows. The potentially negative impacts caused by e-waste on the environment and human health pose an increasingly apparent threat to people's everyday lives and well-being. The nonmetallic fraction (predominantly carbon) of WPCBs is characterized by heavy weight, low resource value, and complex composition, and these characteristics significantly restrict the recycling of the WPCBs to achieve a circular economy.

View Article and Find Full Text PDF

Lithium-ion batteries represent a significant component of the field of energy storage, with a diverse range of applications in consumer electronics, portable devices, and numerous other fields. In view of the growing concerns about the safety of batteries, it is of the utmost importance to develop a sensor that is capable of accurately monitoring the internal temperature of lithium-ion batteries. External sensors are subject to the necessity for additional space and ancillary equipment.

View Article and Find Full Text PDF

Three-dimensional Mechatronic Integrated Devices (3D-MIDs) combine mechanical and electrical functions, enabling significant component miniaturization and enhanced functionality. However, their application in high-temperature environments remains limited due to material challenges. Existing research highlights the thermal stability of ceramic substrates; yet, their reliability under high-stress and complex mechanical loading conditions remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!