Food safety is one of the primary demands of modern society. Mycotoxins are toxic metabolites of food-contaminating fungi. Fungi enter the food chain by infecting crops and irreversibly contaminate them due to the structural stability of mycotoxins. Mycotoxins are stable even at extremely high temperatures; they do not lose their activity during food processing, thus posing a threat to human health. Therefore, it is crucial to detect mycotoxins in food crops during the planting process and at the beginning of the harvest, which requires a rapid and simple detection method. One of the current solutions for this problem is aptamer-based sensors. Here, we deciphered the structure of the binding site in the developed DNA aptamer against deoxynivalenol. The binding site is formed by short single-stranded sequences at the 5'- and 3'-ends of the hairpin, with the Cyanine 3 label at 3'-end. The shortest aptamer with the affinity for deoxynivalenol was used as a recognition element in the surface-enhanced Raman spectroscopy-based sensor to detect mycotoxins in wheat crops.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S000629792412006XDOI Listing

Publication Analysis

Top Keywords

dna aptamer
8
detect mycotoxins
8
binding site
8
mycotoxins
5
deciphering ligand-binding
4
ligand-binding site
4
site dna
4
aptamer targeting
4
targeting deoxynivalenol
4
food
4

Similar Publications

Detecting β-lactoglobulin (β-Lg) with high sensitivity and selectivity is an urgent requirement due to nearly 80% of milk anaphylaxis, such as respiratory tract, skin urticaria, and gastrointestinal disorders, being caused by β-Lg. An ultrasensitive β-Lg electrochemical aptasensor utilizing core-satellite gold nanoparticle@silver nanocluster (AuNPs@AgNCs) nanohybrids as electrocatalysts was developed. First, β-Lg aptamer was anchored on gold electrodes and AuNPs to obtain high selectivity.

View Article and Find Full Text PDF

The flexibility and programmability of CRISPR-Cas technology have made it one of the most popular tools for biomarker diagnostics and gene regulation. Especially, the CRISPR-Cas12 system has shown exceptional clinical diagnosis and gene editing capabilities. Here, we discovered that although the top loop of the 5' handle of guide RNA can undergo central splitting, deactivating CRISPR-Cas12a, the segments can dramatically restore CRISPR function through nucleic acid self-assembly or interactions with small molecules and aptamers.

View Article and Find Full Text PDF

Timely and accurate detection of trace mycotoxins in agricultural products and food is significant for ensuring food safety and public health. Herein, a deep learning-assisted and entropy-driven catalysis (EDC)-Argonaute powered fluorescence single-particle aptasensing platform was developed for ultrasensitive detection of fumonisin B (FB) using single-stranded DNA modified with biotin and red fluorescence-encoded microspheres as a signal probe and streptavidin-conjugated magnetic beads as separation carriers. The binding of aptamer with FB releases the trigger sequence to mediate EDC cycle to produce numerous 5'-phosphorylated output sequences, which can be used as the guide DNA to activate downstream Argonaute (Ago) for cleaving the signal probe, resulting in increased number of fluorescence microspheres remaining in the final reaction supernatant after magnetic separation.

View Article and Find Full Text PDF

A CRISPR/Cas12a-based competitive aptasensor for ochratoxin A detection.

Anal Methods

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

The serious contamination of ochratoxin A (OTA) in agricultural products has promoted the development of rapid, sensitive, and selective analytical methods for OTA monitoring. We demonstrated a competitive aptasensor for OTA detection using CRISPR/Cas12a as an effective signal amplifier. OTA competes with complementary DNA of the aptamer on the microplate to bind to the aptamer.

View Article and Find Full Text PDF

The current work presents comparative assessment of affinity of the designed DNA aptamers for extracellular domain of the human epidermal growth factor receptor (EGFR*). The affinity data of the 20 previously published aptamers are summarized. Diversity of the aptamer selection methods and techniques requires unification of the comparison algorithms, which is also necessary for designing aptamers used in the post-selection fitting to the target EGFR* protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!