Unbalanced redox homeostasis leads to the production of reactive oxygen species and exacerbates inflammatory bowel disease. To investigate the role of the transcription factor Nrf2, a major antioxidative stress sensor, in intestinal epithelial cells (IECs), we generated IEC-specific Nrf2 gene knock-in mice (Nrf2-vRes), which express Nrf2 only in IECs, using the cre/loxp system. Colitis was induced in wild-type (WT) mice, whole-body Nrf2-knockout (Nrf2-KO) mice, and Nrf2-vRes mice by administering dextran sulfate sodium (DSS) for 1 week (acute model) or intermittently for 5 weeks (chronic model). The mRNA and protein levels of NAD(P)H:quinone oxidoreductase 1 (NQO1), which is involved in the oxidative stress response in a manner regulated by Nrf2, were reduced in Nrf2-KO compared with those in WT, while these decreases were reversed in Nrf2-vRes at all timepoints. Nrf2-KO mice administered DSS developed more severe colitis with higher disease activity index, higher leucine-rich α2 glycoprotein in serum, shorter colon length, and more severe epithelial damage and infiltration of inflammatory cells histopathologically than did WT mice in the acute model; moreover, these exacerbations of colitis were ameliorated in Nrf2-vRes mice. However, these differences were not observed among the three sets of mice in the chronic model. IEC-specific expression of Nrf2 ameliorated DSS-induced acute colitis. These results suggest that Nrf2 expression in IECs plays a protective role against early-stage colitis and undertakes important regulatory functions during intestinal inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1538/expanim.24-0152 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!