Growth and differentiation factor 15 (GDF15), a member of the transforming growth factor-βsuperfamily, is considered a stress response factor and has garnered increasing attention in recent years due to its roles in neurological diseases. Although many studies have suggested that GDF15 expression is elevated in patients with neurodegenerative diseases (NDDs), glioma, and ischemic stroke, the effects of increased GDF15 expression and the potential underlying mechanisms remain unclear. Notably, many experimental studies have shown the multidimensional beneficial effects of GDF15 on NDDs, and GDF15 overexpression is able to rescue NDD-associated pathological changes and phenotypes. In glioma, GDF15 exerts opposite effects, it is both protumorigenic and antitumorigenic. The causes of these conflicting findings are not comprehensively clear, but inhibiting GDF15 is helpful for suppressing tumor progression. GDF15 is also regarded as a biomarker of poor clinical outcomes in ischemic stroke patients, and targeting GDF15 may help prevent this disease. Thus, we systematically reviewed the synthesis, transcriptional regulation, and biological functions of GDF15 and its related signaling pathways within the brain. Furthermore, we explored the potential of GDF15 as a therapeutic target and assessed its clinical applicability in interventions for brain diseases. By integrating the latest research findings, this study provides new insights into the future treatment of neurological diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5582/bst.2024.01305 | DOI Listing |
J Diabetes Investig
January 2025
Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Istanbul Medeniyet University, İstanbul, Turkey.
Aims: Growth differentiation factor-15 (GDF-15) is an inflammatory cytokine that increases in prediabetes and is known for its anorexigenic effects. This study aims to evaluate the effects of a 12-week exercise program on GDF-15 in individuals with prediabetes.
Materials And Methods: In this multicenter, parallel-group, randomized-controlled trial, 64 patients aged 18-60 diagnosed with prediabetes were randomized in a 1:1 ratio into the exercise group (E) and the control group (C).
Physical activity (PA), including sedentary behavior, is associated with many diseases, including Alzheimer's disease and all-cause dementia. However, the specific biological mechanisms through which PA protects against disease are not entirely understood. To address this knowledge gap, we first assessed the conventional observational associations of three self-reported and three device-based PA measures with circulating levels of 2,911 plasma proteins measured in the UK Biobank (n =39,160) and assessed functional enrichment of identified proteins.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
March 2025
Department of Clinical Research, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark.
Biosci Trends
January 2025
Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Growth and differentiation factor 15 (GDF15), a member of the transforming growth factor-βsuperfamily, is considered a stress response factor and has garnered increasing attention in recent years due to its roles in neurological diseases. Although many studies have suggested that GDF15 expression is elevated in patients with neurodegenerative diseases (NDDs), glioma, and ischemic stroke, the effects of increased GDF15 expression and the potential underlying mechanisms remain unclear. Notably, many experimental studies have shown the multidimensional beneficial effects of GDF15 on NDDs, and GDF15 overexpression is able to rescue NDD-associated pathological changes and phenotypes.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.
Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.
Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!