Purpose: There are attempts to assess tumor heterogeneity by texture analysis. However, the ordered subsets-expectation maximization (OSEM) reconstruction method has problems depicting heterogeneities. The aim of this study was to identify image reconstruction parameters that improve the ability to depict internal tumor necrosis using a self-made phantom that simulates internal necrosis.

Methods: Self-made phantoms were prepared using polypropylene cylinders with inner diameters of 18.0 mm and 6.0 mm. The concentration ratios of the simulated tumor : tumor interior were 4 : 0 and 4 : 1. For each reconstruction method, the iteration for OSEM and OSEM+point spread function (PSF) were 1 to 25 and the subset was 12. The β values for block sequential regularized expectation maximization (BSREM) were set between 10 and 400. We evaluated the features of the profile curve, contrast-to-noise ratio, and grey-level co-occurrence matrix (GLCM).

Results: In the phantom study, OSEM and OSEM+PSF showed a better delineation of the differences between the inside and outside of the cylinder as iteration was increased and BSREM showed a better delineation as β was decreased. The highest value for each feature, both 4 : 0 and 4 : 1, was BSREM β 10 for angular second moment (ASM) and inverse differential moment (IDM), OSEM iteration 25 for contrast and entropy.

Conclusion: We have identified image reconstruction parameters that improve the ability to visualize internal tumor necrosis. The parameter was BRSEM β 10.

Download full-text PDF

Source
http://dx.doi.org/10.6009/jjrt.25-1453DOI Listing

Publication Analysis

Top Keywords

image reconstruction
12
reconstruction parameters
12
parameters improve
12
improve ability
12
internal tumor
12
ability depict
8
depict internal
8
reconstruction method
8
tumor necrosis
8
4  0 4  1
8

Similar Publications

rsfMRI-based brain entropy is negatively correlated with gray matter volume and surface area.

Brain Struct Funct

January 2025

Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, 670 W Baltimore St, HSF III, R1173, Baltimore, MD, 21202, USA.

The brain entropy (BEN) reflects the randomness of brain activity and is inversely related to its temporal coherence. In recent years, BEN has been found to be associated with a number of neurocognitive, biological, and sociodemographic variables such as fluid intelligence, age, sex, and education. However, evidence regarding the potential relationship between BEN and brain structure is still lacking.

View Article and Find Full Text PDF

Competitive fitness is a fundamental concept in evolutionary biology that captures the ability of organisms to survive, reproduce, and compete for resources in their environment. Competitive fitness is typically assessed in the lab by growing two or more competitors together and measuring the frequency of each at multiple time points. Traditional microbial competitive fitness assays are labor intensive and involve plating on solid medium and counting colonies.

View Article and Find Full Text PDF

Non-invasive assessment of pulmonary nodule malignancy remains a critical challenge in lung cancer diagnosis. Traditional methods often lack precision in differentiating benign from malignant nodules, particularly in the early stages. This study introduces an approach using multifractal spectrum analysis to quantitatively evaluate pulmonary nodule characteristics.

View Article and Find Full Text PDF

In larger, translational animal models, manual measurements of longitudinal bone growth using fluorochrome labels is tedious and may be prone to less rigor due to variations in reader experience, sampling differences, and photobleaching that limits the repeatability of measurements. This study assesses the reliability of three different digital methods to assist in measurement of distance between pulsed fluorochrome labels. Forty-five tibial physes from skeletally immature New Zealand White rabbits were pulsed with fluorochrome labels and measured using Fully Manual Technique (FMT), Manual Digital Measurement (MDM), Computer Assisted Image Processing (AIP), and Fully Automated Measurement (FAM).

View Article and Find Full Text PDF

Significance: Laparoscopic surgery presents challenges in localizing oncological margins due to poor contrast between healthy and malignant tissues. Optical properties can uniquely identify various tissue types and disease states with high sensitivity and specificity, making it a promising tool for surgical guidance. Although spatial frequency domain imaging (SFDI) effectively measures quantitative optical properties, its deployment in laparoscopy is challenging due to the constrained imaging environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!