Purpose: There are attempts to assess tumor heterogeneity by texture analysis. However, the ordered subsets-expectation maximization (OSEM) reconstruction method has problems depicting heterogeneities. The aim of this study was to identify image reconstruction parameters that improve the ability to depict internal tumor necrosis using a self-made phantom that simulates internal necrosis.
Methods: Self-made phantoms were prepared using polypropylene cylinders with inner diameters of 18.0 mm and 6.0 mm. The concentration ratios of the simulated tumor : tumor interior were 4 : 0 and 4 : 1. For each reconstruction method, the iteration for OSEM and OSEM+point spread function (PSF) were 1 to 25 and the subset was 12. The β values for block sequential regularized expectation maximization (BSREM) were set between 10 and 400. We evaluated the features of the profile curve, contrast-to-noise ratio, and grey-level co-occurrence matrix (GLCM).
Results: In the phantom study, OSEM and OSEM+PSF showed a better delineation of the differences between the inside and outside of the cylinder as iteration was increased and BSREM showed a better delineation as β was decreased. The highest value for each feature, both 4 : 0 and 4 : 1, was BSREM β 10 for angular second moment (ASM) and inverse differential moment (IDM), OSEM iteration 25 for contrast and entropy.
Conclusion: We have identified image reconstruction parameters that improve the ability to visualize internal tumor necrosis. The parameter was BRSEM β 10.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.6009/jjrt.25-1453 | DOI Listing |
Brain Struct Funct
January 2025
Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, 670 W Baltimore St, HSF III, R1173, Baltimore, MD, 21202, USA.
The brain entropy (BEN) reflects the randomness of brain activity and is inversely related to its temporal coherence. In recent years, BEN has been found to be associated with a number of neurocognitive, biological, and sociodemographic variables such as fluid intelligence, age, sex, and education. However, evidence regarding the potential relationship between BEN and brain structure is still lacking.
View Article and Find Full Text PDFCurr Protoc
January 2025
Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
Competitive fitness is a fundamental concept in evolutionary biology that captures the ability of organisms to survive, reproduce, and compete for resources in their environment. Competitive fitness is typically assessed in the lab by growing two or more competitors together and measuring the frequency of each at multiple time points. Traditional microbial competitive fitness assays are labor intensive and involve plating on solid medium and counting colonies.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Fever Outpatient Clinic, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine;
Non-invasive assessment of pulmonary nodule malignancy remains a critical challenge in lung cancer diagnosis. Traditional methods often lack precision in differentiating benign from malignant nodules, particularly in the early stages. This study introduces an approach using multifractal spectrum analysis to quantitatively evaluate pulmonary nodule characteristics.
View Article and Find Full Text PDFHistol Histopathol
January 2025
University of Arizona, Phoenix, AZ, USA.
In larger, translational animal models, manual measurements of longitudinal bone growth using fluorochrome labels is tedious and may be prone to less rigor due to variations in reader experience, sampling differences, and photobleaching that limits the repeatability of measurements. This study assesses the reliability of three different digital methods to assist in measurement of distance between pulsed fluorochrome labels. Forty-five tibial physes from skeletally immature New Zealand White rabbits were pulsed with fluorochrome labels and measured using Fully Manual Technique (FMT), Manual Digital Measurement (MDM), Computer Assisted Image Processing (AIP), and Fully Automated Measurement (FAM).
View Article and Find Full Text PDFJ Biomed Opt
January 2025
The Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States.
Significance: Laparoscopic surgery presents challenges in localizing oncological margins due to poor contrast between healthy and malignant tissues. Optical properties can uniquely identify various tissue types and disease states with high sensitivity and specificity, making it a promising tool for surgical guidance. Although spatial frequency domain imaging (SFDI) effectively measures quantitative optical properties, its deployment in laparoscopy is challenging due to the constrained imaging environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!