3D printing of polysaccharide solutions is widely recognized as a highly promising method in the biomedical field for achieving complex customized shapes. One of the main challenges is in selecting conditions, in particular, the rheological properties of the system, to retain the printed shape. For the first time, the direct ink writing (DIW) is successfully applied to neat carboxymethyl cellulose (CMC) solutions without any additives or crosslinking, only by adjusting solutions' rheological properties. The influence of CMC molecular weight, degree of substitution and polymer concentration on solutions' viscoelastic properties is investigated. Extrusion velocity at various pressures and pressure calibration curves are determined to optimize printing parameters. Lightweight and nanostructured materials, aerogels, are then made from the printed structures through drying with supercritical CO. 3D printed aerogels with high shape stability are of density (solid part) around 0.1 g/cm and specific surface area up to 140 m/g, density being twice lower and surface area twice higher than those of the "bulk" (or moulded) counterparts. Customized aerogels with high specific surface area hold significant potential in biomedical applications, such as tissue engineering, wound dressings, drug delivery, etc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.140277 | DOI Listing |
Brain Struct Funct
January 2025
Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, 670 W Baltimore St, HSF III, R1173, Baltimore, MD, 21202, USA.
The brain entropy (BEN) reflects the randomness of brain activity and is inversely related to its temporal coherence. In recent years, BEN has been found to be associated with a number of neurocognitive, biological, and sociodemographic variables such as fluid intelligence, age, sex, and education. However, evidence regarding the potential relationship between BEN and brain structure is still lacking.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
January 2025
Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan.
A novel aerobic marine bacterium, FRT2, isolated from surface water of a fishing port in Fukui, Japan, was characterised based on phylogenomic and phylogenetic analyses combined with classical phenotypic and chemotaxonomic characterisations. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FRT2 clustered with genus Leeuwenhoekiella. Closest relatives of FRT2 were Leeuwenhoekiella palythoae KMM 6264 and Leeuwenhoekiella nanhaiensis G18 with 16S rRNA gene sequence identities of 95.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore, India.
Purpose: Keratoconus (KC) is characterized by irregular astigmatism along with corneal stromal weakness and is associated with altered immune status. Tissue resident microbiomes are known to influence the immune status in other organs, but such a nexus has not been described in ocular conditions. Therefore, we examined the ocular surface microbiome of patients with KC and correlated it to the immune cell and tear molecular factor profiles.
View Article and Find Full Text PDFLangmuir
January 2025
Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, GR-65404 Kavala, Greece.
The remediation of wastewaters contaminated with dyes (discharged mainly from industry) is very important for preserving environmental quality and human health. In this study, a new composite chitosan (CS)-based adsorbent combined with activated carbon (AC) and curcumin (Cur) (abbreviated hereafter as CS/AC@Cur) in three different ratios (12.5%, 25%, and 50%) was synthesized for the removal of anionic [reactive black 5 (RB5)] and cationic [methylene blue (MB)] dyes in single-component or binary systems.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Surface Waters-Research and Management, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.
The primary production of fjords across the Arctic and Subarctic is undergoing significant transformations due to the climatically driven retreat of glaciers and ice sheets. However, the implications of these changes for upper trophic levels remain largely unknown. In this study, we employ both bulk and compound-specific stable isotope analyses to investigate how shifts at the base of fjord food webs impact the carbon and energy sources of consumers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!