Numerous unregulated organic compounds (UOCs) including pharmaceuticals, opioids, and personal care products (PCPs) end up in wastewater. UOC presence in biosolids (a wastewater treatment byproduct), which are applied to soil for different reasons raises environmental and health risk concerns. In this study, two multi-class extraction methods were developed and validated to target 111 UOCs from 8 different major families simultaneously in biosolids and biosolids-impacted soil. One method (M-SPE) is a modified version of EPA 1694, that uses triple solid-liquid extraction and solid phase extraction (SPE). The second method (EMR) is a super-fast method consisting in a single solvent extraction and EMR (enhanced matrix removal)-Lipid dispersive SPE. M-SPE performed better overall with 72 and 54 UOCs extracted with 50-130% recovery for soil and biosolids, respectively, compared to EMR for which only 49 and 43 UOCs achieved within the same range, respectively. EMR performed particularly well for the extraction of low concentration opioids from biosolids. The use of ENVI-Carb as an additional cleanup step and its potential to sorb analytes was also evaluated. Although > 75% sorption of 27 UOCs occurred, ENVI-Carb (graphitized carbon) was needed to sufficiently clean extracts prior to injection to avoid precipitation and protect analytical systems. Application of these methods to environmental samples resulted in detection of some flame retardants, opioids, pharmaceuticals, PCPs and phthalates totaling 29 and 22 UOCs in biosolids and soil historically applied with biosolids, respectively. This methodology will be an asset to determining UOC concentrations in biosolids and biosolids-impacted soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2025.125727 | DOI Listing |
Environ Pollut
January 2025
Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, USA; Ecological Sciences & Engineering Interdisciplinary Graduate Program, Purdue University, West Lafayette, Indiana 47907, USA.
Numerous unregulated organic compounds (UOCs) including pharmaceuticals, opioids, and personal care products (PCPs) end up in wastewater. UOC presence in biosolids (a wastewater treatment byproduct), which are applied to soil for different reasons raises environmental and health risk concerns. In this study, two multi-class extraction methods were developed and validated to target 111 UOCs from 8 different major families simultaneously in biosolids and biosolids-impacted soil.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India. Electronic address:
Background: The unregulated use of pesticides by farmers, for crop productivity results in widespread contamination of organophosphates in real environmental samples, which is a growing societal concern about their potential health effects. The conventional approaches for the monitoring these organophosphate-based pesticides which include immunoassays, electrochemical methods, immunosensors, various chromatography techniques, along with some spectroscopic methods, are either costly, sophisticated, or involves the use of different metal complexes. Therefore, there is an urgent need for sensitive, quick, and easy-to-use detection techniques for the screening of widely used organophosphate-based pesticides.
View Article and Find Full Text PDFToxics
December 2024
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Organophosphorus pesticides are the most extensively utilized agrichemicals in the world. They play a crucial role in regulating crop growth, immunizing against pests, and improving yields, while their unregulated residues exert serious detrimental effects on both the environment and human health. Many efforts have been made in the world to monitor organophosphorus pesticides and solve the issues caused by them.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023, China.
For several decades, the methodology of complete destruction of organic pollutants via oxidation, i.e., mineralization, has been rooted in real water treatment applications.
View Article and Find Full Text PDFJ Sci Food Agric
December 2024
Department of Production Engineering, National Institute of Technology Tiruchirappalli, Trichy, India.
Background: The recycling or decomposition of plastic waste poses challenges due to its non-organic nature. As a consequence of the unregulated production of plastic goods, a substantial quantity of plastic garbage has been generated. There is an increasing demand for sustainable substitutes for synthetic petrochemical-derived plastic products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!