Objective: Psoriasis is a chronic inflammatory skin disease characterized by excessive proliferation and abnormal differentiation of keratinocytes. Although stem cell-based therapies have shown promise in treating psoriasis, the underlying mechanisms remain unclear. This study aimed to established a psoriatic cell model to investigate the effect of normal dermal mesenchymal stem cell (DMSCs) on keratinocyte proliferation, inflammation responses and the associated mechanism.
Methods: To create an in vitro model of psoriasis, HaCaT cells were stimulated with a mixture of five inflammatory cytokines including IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α (M5). A transwell co-culture system was employed to assess the influence of normal DMSCs on proliferation and inflammation response of HaCaT cells. Cell viability was assessed using the CCK-8 assay and EDU incorporation assay. The expression levels of mRNA for inflammatory cytokines (IL-8, IL-17A and TNF-α) in HaCaT cells co-cultured with either normal or psoriatic DMSCs were quantified by qRT-PCR. Apoptosis was evaluated by annexin V-FITC/PI double staining and TUNEL/DAPI staining assay. Autophagy was detected by immunostaining, RT-PCR and western blotting. Additionally, the expression levels of mRNA and protein of both Akt and mammalin target of rapamycin(mTOR) were also determined.
Results: Normal DMSCs were found to decrease the viability and promote apoptosis of HaCaT cells treated with M5. Furthermore, DMSCs reduced the secretion of proinflammatory cytokines, such as IL-8, IL-17A and TNF-α. Importantly, normal DMSCs were shown to induced autophagy in HaCaT cell. Pretreatment of HaCaT cells with autophagy inhibitor 3-methyladenine (3-MA) reversed the anti-psoriatic effect of normal DMSCs. Notably, DMSCs promote autophagy in M5-treated HaCaT cells by inhibition of p-Akt/Akt and p-mTOR/mTOR ratio.
Conclusion: Normal mesenchymal stem cells promote autophagy through the inhibition of Akt/mTOR signaling pathway, leading to the alleviation of psoriasis in vitro. These findings provide insights into the potential mechanisms by which DMSCs may exert therapeutic effects in psoriasis and support further investigation into their clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acthis.2025.152229 | DOI Listing |
J Exp Pharmacol
January 2025
University Center of Excellence for Nutraceuticals, Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, West Java, Indonesia.
Purpose: A promising feature of marine sponges is the potential anticancer efficacy of their secondary metabolites. The objective of this study was to explore the anticancer activities of compounds from the fungal symbiont of on breast cancer cells.
Methods: In the present research, , an endophytic fungal strain derived from the marine sponge was successfully isolated and characterized.
Acta Histochem
January 2025
Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China. Electronic address:
Objective: Psoriasis is a chronic inflammatory skin disease characterized by excessive proliferation and abnormal differentiation of keratinocytes. Although stem cell-based therapies have shown promise in treating psoriasis, the underlying mechanisms remain unclear. This study aimed to established a psoriatic cell model to investigate the effect of normal dermal mesenchymal stem cell (DMSCs) on keratinocyte proliferation, inflammation responses and the associated mechanism.
View Article and Find Full Text PDFMolecules
January 2025
Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea.
The decline in autophagy disrupts homeostasis in skin cells, leading to oxidative stress, energy deficiency, and inflammation-all key contributors to skin photoaging. Consequently, activating autophagy has become a focal strategy for delaying skin photoaging. Natural plants are rich in functional molecules and widely used in the development of anti-photoaging cosmetics.
View Article and Find Full Text PDFMolecules
January 2025
Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
Vascular endothelial growth factor (VEGF), also known as VEGF-A, has been linked to various diseases, such as wet age-related macular degeneration (wAMD) and cancer. Even though there are VEGF inhibitors that are currently commercially available in clinical applications, severe adverse effects have been associated with these treatments. There is still a need to develop novel VEGF-based therapeutics against these VEGF-related diseases.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
is mainly used to treat skin inflammations, wounds, and infections. In this study, Andrographis Herba, the aerial part of the plant, was proven to increase the viability of UVB-damaged HaCat cells and reduce reactive oxygen species levels. The chemical composition of Andrographis Herba extract (AHE) was analyzed using UPLC-Q-TOF-MS, and diterpene lactones were identified as its primary constituents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!