To address the concern of optimization problem of China's PM control and the limitation of computational efficiencies for traditional air quality models, we developed an integrated analysis framework to efficiently establish the identification and cost-benefit assessment of PM control pathways in China by constructing a rapid PM exposure response method based on the high-order decoupled direct method (HDDM) and coupling the sequential least square algorithm (SLSQP) and health impact assessment model. Six emission reduction scenarios with varying decision preferences were analyzed. Our study provides a methodological approach for the rapid optimization of emission pathways of major air pollutants in China with flexible options in terms of objectives and constraints, fully considering the diverse differences in environmental, health, and economic impacts among different pollution sources simultaneously. Our findings based on the multi-scenario analysis strengthen the understanding of the importance of diverse species and regions for emission reduction among various decision preferences in China, confirm the necessity of implementing differentiated control strategies for distinct pollution sources from both cost and cost-effectiveness perspectives, and indicate that accelerating PM control process in the early stage is a beneficial choice for achieving more health benefits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2025.109282 | DOI Listing |
iScience
January 2025
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
In 2022, the European Union put forward the REPowerEU plan in response to Russia's invasion of Ukraine, aiming at enhancing short-term energy security by diversifying imports and reducing natural gas demand while accelerating the deployment of renewable alternatives in the long term. Here, we quantify the life cycle environmental impacts of both REPowerEU's short-term measures, including the controversial extended coal-fired power plant operations, and how the first year of the crisis was managed in practice. We find that the policy measures' impact on greenhouse gas (GHG) emissions would be negligible, although they could have detrimental effects on other environmental categories.
View Article and Find Full Text PDFBackground: Healthcare is a major contributor to global greenhouse gas emissions. Colorectal cancer (CRC) screening is one of the most widely used healthcare services in the US, indicated for approximately 134 million adults. Recommended screening options include fecal immunochemical tests (FITs) every year, CT colonographies (CTCs) every 5 years, or colonoscopies every 10 years.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, UK.
This review explores the behavior of low-concentration CO (LCC) in various energy media, such as solid adsorbents, liquid absorbents, and catalytic surfaces. It delves into the mechanisms of diffusion, adsorption, and catalytic reactions, while analyzing the potential applications and challenges of these properties in technologies like air separation, compressed gas energy storage, and CO catalytic conversion. Given the current lack of comprehensive analyses, especially those encompassing multiscale studies of LCC behavior, this review aims to provide a theoretical foundation and data support for optimizing CO capture, storage, and conversion technologies, as well as guidance for the development and application of new materials.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratoire des Sciences du Climat et de l' Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France.
Organic carbon burial (OCB) in lakes, a critical component of the global carbon cycle, surpasses that in oceans, yet its response to global warming and associated feedbacks remains poorly understood. Using a well-dated biomarker sequence from the southern Tibetan Plateau and a comprehensive analysis of Holocene total organic carbon variations in lakes across the region, here we demonstrate that lake OCB significantly declined throughout the Holocene, closely linked to changes in temperature seasonality. Process-based land surface model simulations clarified the key impact of temperature seasonality on OCB in lakes: increased seasonality in the early Holocene saw warmer summers enhancing ecosystem productivity and organic matter deposition, while cooler winters improved organic matter preservation.
View Article and Find Full Text PDFNat Commun
January 2025
Centre for Environmental Policy, Imperial College London, London, UK.
Equity is a cornerstone of global climate policy, yet differing perspectives mean that international agreement on how to allocate mitigation efforts remains elusive. A rich literature informs this question, but a gap remains in approaches that appropriately consider non-CO emissions and their warming contributions. In this study, we address this gap and define a global warming budget applicable to all anthropogenic greenhouse gases that is allocated to countries based on principles drawn from international treaties and environmental law.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!