Telomere length (TL) is considered a biomarker of aging, and short TL in leukocytes is related to age and stress-related health problems. Cumulative lifetime stress exposure has also been associated with shorter TL and age-related health problems, but the mechanisms are not well understood. We tested in 108 individuals whether shorter TL in leukocytes is observed in individuals with the GABRA6 TT genotype, which has been associated with dysregulation of hypothalamic-pituitary-adrenal axis activity (the main biological stress system) compared to the CC genotype. We also investigated if individuals carrying the TT genotype show higher stress-induced and diurnal cortisol secretion and if cortisol explains the interindividual variability in TL. The analysis pipeline of this study was pre-registered, and the results showed that GABRA6 TT carriers had shorter TL in CD8+CD28+ cells (Bonferroni corrected). In contrast to previous studies, no differences between groups in cortisol secretion were observed, and TL and cortisol did not show significant associations. This study shows, for the first time, shorter TL in CD8+CD28+ cells in TT carriers for GABRA6 compared to CC carriers, suggesting accelerated cellular aging. Although this difference could be linked to an increased susceptibility to stress in the TT carriers, this could not be attributed to the direct influence of cortisol, suggesting the involvement of other mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.psyneuen.2025.107358 | DOI Listing |
Clonal hematopoiesis of indeterminate potential (CHIP) is associated with increased mortality and malignancy risk, yet the determinants of clonal expansion remain poorly understood. We performed sequencing at >4,000x depth of coverage for CHIP mutations in 6,986 postmenopausal women from the Women's Health Initiative at two timepoints approximately 15 years apart. Among 3,685 mutations detected at baseline (VAF ≥ 0.
View Article and Find Full Text PDFTelomere biology disorders (TBDs) are inherited conditions associated with multisystem manifestations. We describe clinical and functional characterisation of a novel TERT variant. Whole-genome sequencing was performed along with single length analysis ().
View Article and Find Full Text PDFPsychoneuroendocrinology
January 2025
Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium. Electronic address:
Telomere length (TL) is considered a biomarker of aging, and short TL in leukocytes is related to age and stress-related health problems. Cumulative lifetime stress exposure has also been associated with shorter TL and age-related health problems, but the mechanisms are not well understood. We tested in 108 individuals whether shorter TL in leukocytes is observed in individuals with the GABRA6 TT genotype, which has been associated with dysregulation of hypothalamic-pituitary-adrenal axis activity (the main biological stress system) compared to the CC genotype.
View Article and Find Full Text PDFJ Math Biol
January 2025
Institut universitaire de France (IUF), Paris, France.
We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere length and its age. We study its Malthusian's behaviour and provide numerical simulations to understand the influence of biologically relevant parameters.
View Article and Find Full Text PDFNat Commun
January 2025
Sorbonne Université, CNRS, Laboratory of Computational and Quantitative Biology, LCQB, Paris, France.
Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!