Octacalcium phosphate (OCP) has been used as a bone replacement material due to its higher bone affinity. However, the mechanism of affinity has not been clarified. Since the 100 crystalline plane of OCP is closely involved in the biological reactions during osteogenesis, it is important to expose the 100 crystalline plane of OCP to the biological fluid to precisely measure the interfacial reactions. In this study, the OCP plate-like crystals were fixed on a conductive substrate in the form of single-particle deposition, and the thin films with exposing 100 crystalline planes were fabricated. Then, the characteristics of hydration layers in the OCP crystals were enhanced by the exposure of 100 crystalline planes through the thin film formation, and the bioreactivity was found to be associated with the swelling and dissolution of the hydration layer in the biological fluid. Specifically, the OCP crystals were deposited on the gold sensor by electrophoretic deposition (). The results showed that the OCP plate-like crystals were selectively deposited on the gold sensor by electrophoresis. Subsequently, it was found that the ultrasonication of resulted in the formation of an OCP crystalline thin film () with the single-particle thickness on the gold sensor with exposing 100 crystalline planes. Moreover, the FT-IR spectra of showed that the structure of the phosphate ions was rearranged by ultrasonication in the hydration layer, resulting in the regulation of the layered nanostructures, promoting higher crystallinity. Furthermore, the XPS spectra of indicated that the hydrogen phosphate ions in the hydration layer were exposed on the 100 crystalline plane of the topmost surface. The prepared was stable in citrate buffer, whereas it showed very high reactivity in phosphate buffer as the hydration layer gradually dissolved after the swelling, which was measured by the QCM-D technique. Therefore, the OCP crystalline thin films in this study were found to have higher surface reactivity due to the enhanced exposure of the hydration layer, which is assumed to be the cause of their bone-regeneration-promoting effect (i.e., higher bone affinity). The films in this study were stable at gastric acid pH and dissolved at neutral pH, which could make them useful as the orally administered drug carrier.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.4c02011 | DOI Listing |
Small
January 2025
Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
Tin halide perovskites are promising candidates for lead-free perovskite solar cells due to their ideal bandgap and high charge-carrier mobility. However, poor crystal quality and rapid degradation in ambient conditions severely limit their stability and practical applications. This study demonstrates that incorporating UiO-66, a zirconium-based MOF, significantly enhances the performance and stability of tin halide perovskite solar cells (TPSCs).
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan.
Octacalcium phosphate (OCP) has been used as a bone replacement material due to its higher bone affinity. However, the mechanism of affinity has not been clarified. Since the 100 crystalline plane of OCP is closely involved in the biological reactions during osteogenesis, it is important to expose the 100 crystalline plane of OCP to the biological fluid to precisely measure the interfacial reactions.
View Article and Find Full Text PDFNat Prod Res
January 2025
Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India.
Current study investigates the medicinal applications of (Palash), the state flower of Jharkhand, India, focusing on synthesising biomodified copper oxide nanoparticles (CuO-NPs) and its antifungal properties. Flavonoid content in the flower extract was quantified by aluminium chloride colorimetric analysis. CuO-NPs were synthesised via co-precipitation method and then modified with methanolic flower extract.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh P.O. Box 2460, Saudi Arabia.
The post-harvest management of fruit is crucial to preventing its decay and loss. Generally, edible coatings are applied to fruit to avoid decay and microbial contamination. We have used ultrasonication to synthesize TiO and residue-derived biosilica embedded in gum arabic nanocomposite.
View Article and Find Full Text PDFMolecules
January 2025
Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 760001, Colombia.
Scaffolds for regenerative therapy can be made from natural or synthetic polymers, each offering distinct benefits. Natural biopolymers like chitosan (CS) are biocompatible and biodegradable, supporting cell interactions, but lack mechanical strength. Synthetic polymers like polyvinyl alcohol (PVA) provide superior mechanical strength and cost efficiency but are not biodegradable or supportive of cell adhesion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!