GRAiCE: reconstructing terrestrial water storage anomalies with recurrent neural networks.

Sci Data

Department of Earth and Environmental Engineering, Columbia University, New York, USA.

Published: January 2025

The Gravity Recovery and Climate Experiment (GRACE) and its follow-on (GRACE-FO) missions have provided estimates of Terrestrial Water Storage Anomalies (TWSA) since 2002, enabling the monitoring of global hydrological changes. However, temporal gaps within these datasets and the lack of TWSA observations prior to 2002 limit our understanding of long-term freshwater variability. In this study, we develop GRAiCE, a set of four global monthly TWSA reconstructions from 1984 to 2021 at 0.5° spatial resolution, using Long Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM) neural networks. Our models accurately reproduce GRACE/GRACE-FO observations at the global scale and effectively capture the impacts of climate extremes. Overall, GRAiCE outperforms a previous reference TWSA reconstruction in predicting observed TWSA and provides reliable water budget estimates at the river basin scale. By generating long-term continuous TWSA time series, GRAiCE will offer valuable insights into the impacts of climate variability and change on freshwater resources.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41597-025-04403-3DOI Listing

Publication Analysis

Top Keywords

terrestrial water
8
water storage
8
storage anomalies
8
neural networks
8
impacts climate
8
twsa
6
graice
4
graice reconstructing
4
reconstructing terrestrial
4
anomalies recurrent
4

Similar Publications

The Gravity Recovery and Climate Experiment (GRACE) and its follow-on (GRACE-FO) missions have provided estimates of Terrestrial Water Storage Anomalies (TWSA) since 2002, enabling the monitoring of global hydrological changes. However, temporal gaps within these datasets and the lack of TWSA observations prior to 2002 limit our understanding of long-term freshwater variability. In this study, we develop GRAiCE, a set of four global monthly TWSA reconstructions from 1984 to 2021 at 0.

View Article and Find Full Text PDF

Bacterial and fungal diversity and species interactions inversely affect ecosystem functions under drought in a semi-arid grassland.

Microbiol Res

January 2025

Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China. Electronic address:

Extreme climatic events, such as drought, can significantly alter belowground microbial diversity and species interactions, leading to unknown consequences for ecosystem functioning. Here, we simulated a drought gradient by removing 30 %, 50 %, and 70 % of precipitation in a semi-arid grassland over five years. We assessed the effects of drought on bacterial and fungal diversity, as well as on their species interactions.

View Article and Find Full Text PDF

One of the significant challenges facing modern medicine is the rising rate of antibiotic resistance, which impacts public health, animal health, and environmental preservation. Evaluating antibiotic resistance in wildlife and their environments is crucial, as it offers essential insights into the dynamics of resistance patterns and promotes strategies for monitoring, prevention, and intervention. and genera isolates were recovered from fecal samples of wild animals and environmental samples using media without antibiotic supplementation.

View Article and Find Full Text PDF

Rose Bengal antigen and smooth lipopolysaccharide (s-LPS) were produced from a field strain of ("homologous" antigens) and from the reference strain S99 ("heterologous" antigens); they are currently used for the diagnosis of brucellosis in cattle, water buffaloes, sheep, goats, and pigs, as recommended in the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals of the World Organization for Animal Health (WOAH). "Homologous" and "heterologous" antigens were used in a rapid serum agglutination test (Rose Bengal test, RBT) and a competitive ELISA assay (c-ELISA) to test a panel of sera, blood, and other body fluids (cerebrospinal fluid, pericardial fluid, tracheal fluid, and aqueous humor) collected from 71 individuals belonging to five cetacean species (; ; ; ; and ), which were found stranded on the Italian coastline. Six animals were positive for spp.

View Article and Find Full Text PDF

Marine polysaccharide hydrogels have emerged as an innovative platform for regulating the in vivo release of natural bioactive compounds for medical purposes. These hydrogels, which have exceptional biocompatibility, biodegradability, and high water absorption capacity, create effective matrices for encapsulating different bioactive molecules. In addition, by modifying the physical and chemical properties of marine hydrogels, including cross-linking density, swelling behavior, and response to external stimuli like pH, temperature, or ionic strength, the release profile of encapsulated bioactive compounds is strictly regulated, thus maximizing therapeutic efficacy and minimizing side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!