Tracheobronchomalacia (TBM) presents diagnostic challenges due to its nonspecific symptoms and variability in diagnostic methods. This study evaluates physician concordance in TBM diagnosis and phenotyping using chest computed tomography (CT) scans with dynamic expiratory views. We conducted a retrospective cross-sectional study at Mayo Clinic Rochester, analyzing 150 patients with dynamic expiratory CT scans. Three specialists-a thoracic radiologist, a bronchoscopist, and a pulmonologist-reviewed identical CT scans, blinded to prior interpretations. Inter-rater agreement was assessed using Fleiss's Kappa for TBM diagnosis and Cohen's Kappa for TBM phenotype classification into six categories: No TBM, Excessive Dynamic Airway Collapse (EDAC), Crescent Type, Circumferential Type, Saber-Sheath Type, and Mixed Type. Among the 150 patients, 54 (36%) were diagnosed with TBM or EDAC. TBM was more prevalent in males, older individuals, and smokers. Agreement among specialists was substantial for TBM diagnosis (Fleiss's Kappa = 0.61, p < 0.001) but moderate for phenotype classification (Fleiss's Kappa = 0.52, p < 0.001). The highest concordance was between the thoracic radiologist and the pulmonologist (Cohen's Kappa = 0.68), while the lowest was between the bronchoscopist and other specialists. There is substantial agreement in TBM diagnosis using chest CT scans with dynamic expiratory views, but moderate variability in phenotyping. Standardizing criteria and integrating pulmonary function testing could enhance diagnostic consistency and clinical relevance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-86725-1 | DOI Listing |
Sci Rep
January 2025
Division of Pulmonary & Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
Tracheobronchomalacia (TBM) presents diagnostic challenges due to its nonspecific symptoms and variability in diagnostic methods. This study evaluates physician concordance in TBM diagnosis and phenotyping using chest computed tomography (CT) scans with dynamic expiratory views. We conducted a retrospective cross-sectional study at Mayo Clinic Rochester, analyzing 150 patients with dynamic expiratory CT scans.
View Article and Find Full Text PDFMuscle Nerve
January 2025
Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
Introduction/aims: Spirometry is the conventional means to measure lung function in amyotrophic lateral sclerosis (ALS), but is dependent on patient effort and bulbar strength. We aimed to use electric impedance tomography (EIT), an emerging non-invasive imaging modality, to measure dynamic lung volume changes.
Methods: Twenty-one patients with ALS underwent sitting and supine spirometry for forced vital capacity (FVC), and sitting and supine EIT.
Sci Rep
January 2025
Dep. Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081, LA, The Netherlands.
The increasing use of recreational nitrous oxide ([Formula: see text]O) in the Netherlands and its link to traffic accidents highlights the need for reliable detection methods for law enforcement. This study focused on ex vivo detection of [Formula: see text]O in exhaled breath and examining its persistence in the human body. Firstly, a low-cost portable infrared based detector was selected and validated to detect [Formula: see text]O in air.
View Article and Find Full Text PDFSurg Endosc
January 2025
Department of Anesthesiology and Reanimation, Faculty of Medicine, Istınye University Medicalpark Gaziosmanpasa Hospital, Istanbul, Turkey.
Background: The aim of our study is to compare the effect of the 30° reverse Trendelenburg position combined with the beach chair position on respiratory parameters in laparoscopic sleeve gastrectomy (LSG) with the 30° reverse Trendelenburg position alone.
Material And Method: Fifty patients with body mass index > 30 were included in the study. The patients were divided into two groups; in the control group, the standard 30° reverse Trendelenburg.
Radiol Cardiothorac Imaging
February 2025
From the Department of Biomedical Engineering (X.Z.) and Columbia Magnetic Resonance Research Center (CMRRC) (W.S.), Columbia University, New York, NY; Departments of Medicine (C.B.C., J.P.F.) and Radiology (J.P.F.), University of California at Los Angeles, Los Angeles, Calif; Department of Radiology, Weill Cornell Medicine, New York, NY (M.R.P.); Department of Radiology (M.R.P., S.M.D., S.J.), Department of Medicine (M.C.B., R.G.B.), Department of Epidemiology (R.G.B.), Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics (W.S.), and Institute of Human Nutrition (W.S.), Columbia University Irving Medical Center, 632 W 168th St, PH-17, New York, NY 10032; Department of Radiology (B.A.V., J.A.C.L.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (N.N.H.), Johns Hopkins University, Baltimore, Md; Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (D.A.B.); Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC (D.C.); Departments of Radiology, Medicine, and the Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa (E.A.H.); Sections on Cardiology and Geriatrics, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC (D.W.K.); Division of Pulmonary, Critical Care, Sleep, and Allergy (J.A.K.) and Department of Radiology, College of Medicine (M.G.M.), University of Illinois at Chicago, Chicago, Ill; Department of Radiology and Biomedical Imaging (Y.J.L., J.L.), Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, School of Medicine (P.G.W.), and Cardiovascular Research Institute (P.G.W.), University of California at San Francisco, San Francisco, Calif; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Wake Forest University, Winston-Salem, NC (J.O., S.P.P.); Division of Pulmonary Medicine, Department of Medicine, Mayo Clinic, Phoenix, Ariz (V.E.O.); Department of Medicine, University of Utah, Salt Lake City, Utah (R.P.); Department of Radiology, Mayo Clinic, Rochester, Minn (J.D.S.); Department of Radiology, Hannover Medical School, Hannover, Germany (J.V.C.); and BREATH, Member of the German Center for Lung Research (DZL), Hannover, Germany (J.V.C.).
Purpose To assess the repeatability of real-time cine pulmonary MRI measures of metronome-paced tachypnea (MPT)-induced dynamic hyperinflation and its relationship with chronic obstructive pulmonary disease (COPD) severity. Materials and Methods SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) (ClinicalTrials.gov identifier no.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!